摘要:
Automatically determining the cost of a printed job on a digital printing press before the job is run. A job control component in the digital front end of the printing press collects and stores the processing information from the job processing components from prior runs. A job-reporting component displays the stored and estimated processing information and automatically computes and displays the estimated cost of the job. The method includes determining a future toner cost using a toner cost, a future press usage cost, and a substrate cost based on historical toner consumption and then rasterizing the job to determine the total job cost.
摘要:
Automatically determining the cost of a printed job on a digital printing press before the job is run. A job control component in the digital front end of the printing press collects and stores the processing information from the job processing components from prior runs. A job-reporting component displays the stored and estimated processing information and automatically computes and displays the estimated cost of the job. The method includes determining a future toner cost using a toner cost, a future press usage cost, and a substrate cost based on historical toner consumption and then rasterizing the job to determine the total job cost.
摘要:
Automatically determining the cost of a printed job on a digital printing press before the job is run. A job control component in the digital front end of the printing press collects and stores the processing information from the job processing components from prior runs. A job-reporting component displays the stored and estimated processing information and automatically computes and displays the estimated cost of the job. The method includes determining a future toner cost using a toner cost, a future press usage cost, and a substrate cost based on historical toner consumption and then rasterizing the job to determine the total job cost.
摘要:
An extracorporeal therapeutic device automatically controls a rotation speed of a centrifuge for processing whole blood. Separation of whole blood components is achieved with minimal thermal contribution to blood temperature from the motor control mechanism that rotates the centrifuge and from aerodynamic drag on the rotating centrifuge.