Abstract:
A heating apparatus includes: first and second heaters, first and second switches, first and second ramp signal generation circuits, a signal processor circuit, first and second comparison circuits, and a switch control circuit. The first and second ramp signal generation circuits generate first and second ramp signals according to first and second output currents, respectively. The signal processor circuit senses a temperature to generate a temperature-related signal. The first and second comparison circuits compare the first and second ramp signals with the temperature-related signal, to generate a first PWM signal and a second PWM signal for controlling the first and second switches respectively, to determine the first and second output currents so that there is a predetermined ratio between average powers of the first heater and the second heater.
Abstract:
A charger circuit with temperature compensation function includes: a power converter, an input voltage sense circuit, an output adjustment circuit and a charging control circuit. The power converter converts an input voltage supplied from a photovoltaic power module to an output voltage. The input voltage sense circuit generates a signal related to the input voltage according to the input voltage. The output adjustment circuit generates an output adjustment signal according to the signal related to the input voltage. The charging control circuit generates a control signal according to the output adjustment signal, thereby adjusting a level of an output current supplied from the power converter. When a level of the input voltage is smaller than a predetermined voltage threshold, the power converter decreases the output current.
Abstract:
A power conversion apparatus for tracking maximum power point (MPP) includes: a signal processing circuit generating a first sensing signal at a sensing node; a first comparison circuit generating a first control signal according to a difference between the first sensing signal and a first reference voltage; and a second comparison circuit sensing a second sensing signal generated from the conversion circuit. The second comparison circuit generates a second control signal according to a difference between the second sensing signal and a reference signal. The signal processing circuit includes a bias sensing circuit and a clamp circuit. The bias sensing circuit adjusts the first sensing signal according to the second control signal, to adjust the first control signal. The conversion circuit adjusts a voltage and/or current of the output power according to the adjusted first control signal, so that a power retrieval source operates near its MPP.
Abstract:
The present invention provides a bio-cell detection apparatus and a bio detection method. The bio detection method includes: in absence of a biological reagent being introduced, pre-calibrating an initial value of a bio-cell detection chip. In absence of a sample to be tested in the bio-cell detection chip, introducing only the biological reagent into the bio-cell detection chip; and, measuring a first electrical parameter between a pair of opposing electrodes of the bio-cell detection chip. Introducing both the biological reagent and the sample to be tested into the bio-cell detection chip at the same time; and, measuring a second electrical parameter between the pair of opposing electrodes of the bio-cell detection chip. Comparing the second electrical parameter and the first electrical parameter, to determine whether a target biomolecule to be detected is present.
Abstract:
A power conversion apparatus for tracking maximum power point (MPP) includes: a signal processing circuit generating a first sensing signal at a sensing node; a first comparison circuit generating a first control signal according to a difference between the first sensing signal and a first reference voltage; and a second comparison circuit sensing a second sensing signal generated from the conversion circuit. The second comparison circuit generates a second control signal according to a difference between the second sensing signal and a reference signal. The signal processing circuit includes a bias sensing circuit and a clamp circuit. The bias sensing circuit adjusts the first sensing signal according to the second control signal, to adjust the first control signal. The conversion circuit adjusts a voltage and/or current of the output power according to the adjusted first control signal, so that a power retrieval source operates near its MPP.
Abstract:
A heating apparatus includes: first and second heaters, first and second switches, first and second ramp signal generation circuits, a signal processor circuit, first and second comparison circuits, and a switch control circuit. The first and second ramp signal generation circuits generate first and second ramp signals according to first and second output currents, respectively. The signal processor circuit senses a temperature to generate a temperature-related signal. The first and second comparison circuits compare the first and second ramp signals with the temperature-related signal, to generate a first PWM signal and a second PWM signal for controlling the first and second switches respectively, to determine the first and second output currents so that there is a predetermined ratio between average powers of the first heater and the second heater.
Abstract:
A power conversion apparatus for tracking maximum power point, includes: a signal processing circuit, which generates a sensing signal at a sensing node according to an input voltage; and a comparison circuit, which controls a converter circuit according to a difference between the sensing signal and a reference voltage, to convert the input voltage to an output power. The signal processing circuit includes: a bias sensing circuit, which generates the sensing signal at the sensing node according to the input voltage; and a clamp circuit coupled to the sensing node, for clamping the sensing signal to be not greater than a clamp voltage. The converter circuit adjusts an output voltage and/or an output current of the output power, so that a power retrieval source operates near its maximum power point.
Abstract:
The invention relates to a method for estimating the state of charge (SOC) of a battery when battery is in the at least states of: charging, discharging, and relaxing. The invention makes use of the battery voltage (Vbat) instead of the battery current. In order to build models in the method, we use standard charging and discharging processes to collect battery information.
Abstract:
A multi-source energy harvester system includes a power conversion apparatus. First and second energy harvesters respectively harvest first and second energy and respectively provide first and second input powers. The power conversion apparatus includes an adjustable impedance matching circuit and a power conversion circuit. The impedance matching circuit generates an adjusted power according to the first input power. The power conversion circuit converts a bus power to an output power. The energy harvester system controls a first and a second switch circuits according to the adjusted power and/or the second input power to select and conduct one of the adjusted power or the second input power as the bus power, and adjusts an impedance of the adjustable impedance matching circuit to maximize a voltage of the adjusted power.
Abstract:
A multi-source energy harvester system includes a power conversion apparatus. First and second energy harvesters respectively harvest first and second energy and respectively provide first and second input powers. The power conversion apparatus includes an adjustable impedance matching circuit and a power conversion circuit. The impedance matching circuit generates an adjusted power according to the first input power. The power conversion circuit converts a bus power to an output power. The energy harvester system controls a first and a second switch circuits according to the adjusted power and/or the second input power to select and conduct one of the adjusted power or the second input power as the bus power, and adjusts an impedance of the adjustable impedance matching circuit to maximize a voltage of the adjusted power.