Abstract:
The present disclosure provides Al—Si—Mg aluminum alloys comprising a deliberate addition of Mn between 0.05-0.40 weight percent to increase at least one tensile property (such as the yield strength) of an aluminum product comprising such alloy. The Al—Si—Mg alloy comprises, in weight percent, 5-9% Si, 0.35-0.75% Mg, 0.05-0.4% Mn, less than 0.15% Fe, up to 0.15% Ti, 0.005-0.03% Sr and the balance being aluminum and unavoidable impurities, wherein the unavoidable impurities may be present in an amount of up to 0.05% each and up to 0.15% total. The present disclosure provides a foundry ingot comprising the above Al—Si—Mg aluminum alloy, a process for making the above Al—Si—Mg aluminum alloy and an aluminum alloy obtainable by said process.
Abstract:
An aluminum alloy composition includes, in weight percent: 0.7-1.10 manganese; 0.05-0.25 iron; 0.21-0.30 silicon; 0.005-0.020 nickel; 0.10-0.20 titanium; 0.014 max copper; and 0.05 max zinc, with the balance being aluminum and unavoidable impurities. The alloy may tolerate higher nickel contents than existing alloys, while providing increased corrosion resistance, as well as similar extrudability, strength, and performance. Billets of the alloy may be homogenized at 590-640° C. and controlled cooled at less than 250° C. per hour. The homogenized billet may be extruded into a product, such as an aluminum alloy heat exchanger tube.
Abstract:
There is provided a high strength high formable aluminum alloys (Al—Mg—Mn alloy). The aluminum alloy exhibits improved castability by achieving lower required torque at high temperature, while meeting or exceeding the ambient temperature strength and formability requirements for high strength applications. The aluminum alloy comprises in weight percent Mg 1.0-2.0, 0.2-0.95 Mn, 0.05-0.35 Cr with the balance being aluminum and inevitable impurities.
Abstract:
The present disclosure concerns a cast aluminum alloy for making cast aluminum products, especially using high-pressure vacuum die casting operations. The cast aluminum alloy comprises, in weight percent: Ni between about 1.5 and about 6.5; Si between about 0.10 and 1.5; Mg between about 0.10 and about 3; Fe up to about 0.2; Mn up to about 0.65; Ti up to about 0.12; V up to about 0.15; Zr up to about 0.15; Mo up to about 0.15; Cr up to about 0.01; Sr up to about 0.02; and the balance being aluminum and unavoidable impurities.
Abstract:
An aluminum alloy composition includes, in weight percent: 0.7-1.10 manganese; 0.05-0.25 iron; 0.21-0.30 silicon; 0.005-0.020 nickel; 0.10-0.20 titanium; 0.014 max copper; and 0.05 max zinc, with the balance being aluminum and unavoidable impurities. The alloy may tolerate higher nickel contents than existing alloys, while providing increased corrosion resistance, as well as similar extrudability, strength, and performance. Billets of the alloy may be homogenized at 590-640° C. and controlled cooled at less than 250° C. per hour. The homogenized billet may be extruded into a product, such as an aluminum alloy heat exchanger tube.
Abstract:
An aluminum alloy includes, in weight percent, 0.70-0.85 Si, 0.14-0.25 Fe, 0.25-0.35 Cu, 0.05 max Mn, 0.75-0.90 Mg, 0.12-0.18 Cr, 0.05 max Zn, and 0.04 max Ti, the balance being aluminum and unavoidable impurities. The alloy may be suitable for extruding, and may be formed into an extruded alloy product.
Abstract:
An aluminum alloy includes, in weight percent, 0.70-0.85 Si, 0.14-0.25 Fe, 0.25-0.35 Cu, 0.05 max Mn, 0.75-0.90 Mg, 0.12-0.18 Cr, 0.05 max Zn, and 0.04 max Ti, the balance being aluminum and unavoidable impurities. The alloy may be suitable for extruding, and may be formed into an extruded alloy product.
Abstract:
The present disclosure provides Al—Si—Mg aluminum alloys comprising a deliberate addition of Mn between 0.05-0.40 weight percent to increase at least one tensile property (such as the yield strength) of an aluminum product comprising such alloy. The Al—Si—Mg alloy comprises, in weight percent, 5-9% Si, 0.35-0.75% Mg, 0.05-0.4% Mn, less than 0.15% Fe, up to 0.15% Ti, 0.005-0.03% Sr and the balance being aluminum and unavoidable impurities, wherein the unavoidable impurities may be present in an amount of up to 0.05% each and up to 0.15% total. The present disclosure provides a foundry ingot comprising the above Al—Si—Mg aluminum alloy, a process for making the above Al—Si—Mg aluminum alloy and an aluminum alloy obtainable by said process.
Abstract:
An aluminum alloy having an excellent combination of strength, extrudability and corrosion resistance may include in weight percent, about 0.01% or less copper; about 0.15% or less iron; about 0.60 to about 0.90% manganese, where manganese and iron are present in the alloy in a Mn:Fe ratio of at least about 6.6; about 0.02% or less nickel; about 0.08 to about 0.30% silicon; about 0.10 to about 0.20% titanium; and about 0.05 to about 0.20% zinc; the balance being aluminum and unavoidable impurities. Extruded articles and other articles may be formed using the alloy. Methods of forming such articles may include homogenizing a billet of the alloy prior to forming the article.
Abstract:
An aluminum alloy includes, in weight percent, 0.70-0.85 Si, 0.14-0.25 Fe, 0.25-0.35 Cu, 0.05 max Mn, 0.75-0.90 Mg, 0.12-0.18 Cr, 0.05 max Zn, and 0.04 max Ti, the balance being aluminum and unavoidable impurities. The alloy may be suitable for extruding, and may be formed into an extruded alloy product.