摘要:
Methods and apparatus for contention-based access in a wireless communication system are disclosed. A base station may determine a contention-based resource allocation comprising a subset of available system resources. Information related to the contention-based resources may be sent to a user device. In addition, state information may be provided to the UE. The UE may generate and send a contention-based uplink transmission consistent with the allocated resources and state information.
摘要:
Methods and apparatus for contention-based access in a wireless communication system are disclosed. A base station may determine a contention-based resource allocation comprising a subset of available system resources. Information related to the contention-based resources may be sent to a user device. In addition, state information may be provided to the UE. The UE may generate and send a contention-based uplink transmission consistent with the allocated resources and state information.
摘要:
Systems and methodologies are described that facilitate adapting wireless device scheduling parameters at least in part by adjusting prioritized bit rates (PBR) of one or more logical channels. The PBRs can be adjusted according to feedback from a media access control layer scheduler or a radio link control layer regarding resource allocations to one or more wireless device, served rate for one or more wireless device, and/or the like. Adjusting the PBRs based on the feedback can increase likelihood that data can be transmitted over substantially all or a specified set of logical channels. Moreover, PBRs can be modified for specific wireless devices based further on resource allocations thereto. Furthermore, PBRs can be modified based at least in part on radio conditions of neighboring access points.
摘要:
An apparatus and method are disclosed for determining the optimal bandwidth fractions for all the users in each frequency band in a wireless communication system to maximize the net sum of user utilities. User utilities are functions of average rates of users, where different averaging rules can be used for different users. The standard approach of computing an optimal scheduler strategy involves the solution of a convex optimization problem that has a complexity on the order of O(N3) for N flows. This approach is not feasible for online implementation having a large number of flows. The method of the present work employs an efficient computational algorithm that obtains the optimal bandwidth fractions in O(N) time. This feature makes the method suitable for implementation in wideband cellular systems like LTE (Long Term Evolution) and UMB (Ultra Mobile Broadband).
摘要:
An apparatus and method are disclosed for determining the optimal bandwidth fractions for all the users in each frequency band in a wireless communication system to maximize the net sum of user utilities. User utilities are functions of average rates of users, where different averaging rules can be used for different users. The standard approach of computing an optimal scheduler strategy involves the solution of a convex optimization problem that has a complexity on the order of O(N3) for N flows. This approach is not feasible for online implementation having a large number of flows. The method of the present work employs an efficient computational algorithm that obtains the optimal bandwidth fractions in O(N) time. This feature makes the method suitable for implementation in wideband cellular systems like LTE (Long Term Evolution) and UMB (Ultra Mobile Broadband).