摘要:
A multi-pass optical cell with an actuator for actuating a reflective surface is provided. In one preferred embodiment, an apparatus is provided comprising a first reflective surface, a second reflective surface, and a support structure supporting the first and second reflective surfaces. The support structure positions the first and second reflective surfaces to create an optical cell. The apparatus also comprises a source and a detector, which are positioned such that light emitted from the source is reflected in the optical cell at least one time between the first and second reflective surfaces before reaching the detector. The apparatus further comprises an actuator coupled with and operative to actuate the first reflective surface. In some embodiments, the actuator rotates the first reflective surface. Also, in some embodiments, the multi-pass optical cell is an open path multi-pass optical cell, while, in other embodiments, the multi-pass optical cell is a closed path multi-pass optical cell.
摘要:
A multi-pass optical cell with an actuator for actuating a reflective surface is provided. In one preferred embodiment, an apparatus is provided comprising a first reflective surface, a second reflective surface, and a support structure supporting the first and second reflective surfaces. The support structure positions the first and second reflective surfaces to create an optical cell. The apparatus also comprises a source and a detector, which are positioned such that light emitted from the source is reflected in the optical cell at least one time between the first and second reflective surfaces before reaching the detector. The apparatus further comprises an actuator coupled with and operative to actuate the first reflective surface. In some embodiments, the actuator rotates the first reflective surface. Also, in some embodiments, the multi-pass optical cell is an open path multi-pass optical cell, while, in other embodiments, the multi-pass optical cell is a closed path multi-pass optical cell.
摘要:
A multi-pass optical cell with an actuator for actuating a reflective surface is provided. In one preferred embodiment, an apparatus is provided comprising a first reflective surface, a second reflective surface, and a support structure supporting the first and second reflective surfaces. The support structure positions the first and second reflective surfaces to create an optical cell. The apparatus also comprises a source and a detector, which are positioned such that light emitted from the source is reflected in the optical cell at least one time between the first and second reflective surfaces before reaching the detector. The apparatus further comprises an actuator coupled with and operative to actuate the first reflective surface. In some embodiments, the actuator rotates the first reflective surface. Also, in some embodiments, the multi-pass optical cell is an open path multi-pass optical cell, while, in other embodiments, the multi-pass optical cell is a closed path multi-pass optical cell.
摘要:
Disclosed embodiments of the present invention provide means to obtain correct gas density and flux measurements using (i) gas analyzer (open-path, or closed-path gas analyzers with short intake tube, for example 1 m long, or any combination of the two); (ii) fast temperature or sensible heat flux measurement device (such as, fine-wire thermocouple, sonic anemometer, or any other device providing fast accurate gas temperature measurements); (iii) fast air water content or latent heat flux measurement device (such as, hygrometer, NDIR analyzer, any other device providing fast accurate gas water content measurements); (iv) vertical wind or sampling device (such as sonic anemometer, scintillometer, or fast solenoid valve, etc.) and (v) algorithms in accordance with the present invention to compute the corrected gas flux, compensated for T-P effects. In case when water factor in T-P effects is negligible, the fast air water content or latent heat flux measurement device (item iii in last paragraph) can be excluded.
摘要:
Disclosed embodiments of the present invention provide means to obtain correct gas density and flux measurements using (i) gas analyzer (open-path, or closed-path gas analyzers with short intake tube, for example 1 m long, or any combination of the two); (ii) fast temperature or sensible heat flux measurement device (such as, fine-wire thermocouple, sonic anemometer, or any other device providing fast accurate gas temperature measurements); (iii) fast air water content or latent heat flux measurement device (such as, hygrometer, NDIR analyzer, any other device providing fast accurate gas water content measurements); (iv) vertical wind or sampling device (such as sonic anemometer, scintillometer, or fast solenoid valve, etc.) and (v) algorithms in accordance with the present invention to compute the corrected gas flux, compensated for T-P effects. In case when water factor in T-P effects is negligible, the fast air water content or latent heat flux measurement device (item iii in last paragraph) can be excluded.
摘要:
Disclosed embodiments of the present invention provide means to obtain correct gas density and flux measurements using (i) gas analyzer (open-path, or closed-path gas analyzers with short intake tube, for example 1 m long, or any combination of the two); (ii) fast temperature or sensible heat flux measurement device (such as, fine-wire thermocouple, sonic anemometer, or any other device providing fast accurate gas temperature measurements); (iii) fast air water content or latent heat flux measurement device (such as, hygrometer, NDIR analyzer, any other device providing fast accurate gas water content measurements); (iv) vertical wind or sampling device (such as sonic anemometer, scintillometer, or fast solenoid valve, etc.) and (v) algorithms in accordance with the present invention to compute the corrected gas flux, compensated for T-P effects. In case when water factor in T-P effects is negligible, the fast air water content or latent heat flux measurement device (item iii in last paragraph) can be excluded.
摘要:
A system and method to obtain correct gas density and flux measurements using (i) gas analyzer (open-path, or closed-path gas analyzers with short intake tube, or any combination of the two); (ii) fast temperature or sensible heat flux measurement device (such as, fine-wire thermocouple, sonic anemometer, or any other device providing fast accurate gas temperature measurements); (iii) fast air water content or latent heat flux measurement device (such as, hygrometer, NDIR analyzer, any other device providing fast accurate gas water content measurements); (iv) vertical wind or sampling device (such as sonic anemometer, scintillometer, or fast solenoid valve, etc.) and (v) algorithms in accordance with the present invention to compute the corrected gas flux, compensated for T-P effects. In case when water factor in T-P effects is negligible, the fast air water content or latent heat flux measurement device (item iii in last paragraph) can be excluded.