摘要:
Compositions for increasing the thermal and pressure stability of well fluids viscosified using viscoelastic surfactants, the compositions including an effective amount of an oligomeric or polymeric compound that has a thermally stable backbone structure and at least one pendent viscoelastic surfactant functional group. Preferred compositions for increasing the stability of well fluids viscosified using monomeric viscoelastic surfactants include an effective amount of an oligomeric or polymeric compound that has a thermally stable backbone structure and a multiplicity of pendent viscoelastic surfactant functional groups attached to said backbone structure through relatively long hydrocarbon chains, 1 to 18 carbons in length.
摘要:
Methods and systems for analyzing engine unbalance conditions are disclosed. In one embodiment, a method includes receiving vibrational data from a plurality of locations distributed over an engine and a surrounding engine support structure, and inputting the vibrational data into a neural network inverse model. The neural network inverse model establishes a relationship between the vibrational data and an unbalance condition of the engine, and outputs diagnostic information indicating the unbalance condition of the engine. In a further embodiment, a method further includes subjecting the vibrational data to a Fast Fourier Transformation to extract a desired once per revolution vibrational data prior to input to the neural network inverse model.
摘要:
Methods and systems for analyzing engine unbalance conditions are disclosed. In one embodiment, a method includes receiving vibrational data from a plurality of locations distributed over an engine and a surrounding engine support structure, and inputting the vibrational data into a neural network inverse model. The neural network inverse model establishes a relationship between the vibrational data and an unbalance condition of the engine, and outputs diagnostic information indicating the unbalance condition of the engine. In a further embodiment, a method further includes subjecting the vibrational data to a Fast Fourier Transformation to extract a desired once per revolution vibrational data prior to input to the neural network inverse model.
摘要:
Methods and systems for analyzing engine unbalance conditions are disclosed. In one embodiment, a method includes receiving vibrational data from a plurality of locations distributed over an engine and a surrounding engine support structure, and inputting the vibrational data into a neural network inverse model. The neural network inverse model establishes a relationship between the vibrational data and an unbalance condition of the engine, and outputs diagnostic information indicating the unbalance condition of the engine. In a further embodiment, a method further includes subjecting the vibrational data to a Fast Fourier Transformation to extract a desired once per revolution vibrational data prior to input to the neural network inverse model.
摘要:
A system for identifying events includes a memory capable of storing a compressed event table including a number of events, the event table having been compressed by reducing the number of events in the event table without reducing the number of events represented by the event table. Each event of the event table includes a set of state parameters, and may also be associated with an output. The system also includes a processor capable of operating a fast state recognition (FSR) application. The FSR application, in turn, can receive a plurality of inputs, and identify an event of the compressed event table based upon the plurality of inputs and the state parameters of the compressed event table, event being identified in accordance with a state recognition technique.
摘要:
The method and system quantify the impact of various design and operational solutions for equipment modules of a structure and the overall structure based upon economic factors. In particular, the method and system provide cost evaluation of various maintenance approaches for at least one equipment module that is part of an overall structure. In addition, a baseline and alternate equipment module may be specified for each equipment module. The costs associated with each of the maintenance approaches for each baseline and alternate equipment module then may be compared and the costs associated with the overall structure having a chosen maintenance approach for each baseline and alternate equipment module may be evaluated. The sensitivity of the costs associated with the overall structure to changes in one or more of the parameter values also may be calculated.