摘要:
Apparatus and method provide flexibility in generating a stimulation waveform to an electrode of an Implantable Neuro Stimulator (INS). The stimulation waveform is synthesized for each rate period interval. Each rate period interval is partitioned into time intervals, during which stimulation pulses, recharging, and time duration delays may be induced. With the embodiment of the invention, a second stimulation pulse, having different electrical characteristics than a first stimulation pulse, may be generated during the rate period interval. An embodiment utilizes apparatus comprising a waveform controller and a waveform generator that are controlled by the waveform controller. The waveform controller uses waveform parameters to instruct the waveform generator to form stimulation pulses. Any of the components may be adjusted or deleted in the generation of the stimulation waveform. The embodiment enables any of the associated waveform parameters to be updated at the waveform controller in order to alter the stimulation waveform.
摘要:
Apparatus and method for independently delivering a plurality of therapy programs in an implantable medical device. A therapy controller configures the device to generate independent pulse trains associated with a plurality of therapy programs and dynamically configures the electrodes to deliver the independent pulse trains to the patient. Once configured, the implantable medical device delivers the plurality of therapy programs to the patient wherein the therapy programs may overlap in time.
摘要:
Apparatus and method for independently delivering a plurality of therapy programs in an implantable medical device. A therapy controller configures the device to generate independent pulse trains associated with a plurality of therapy programs and dynamically configures the electrodes to deliver the independent pulse trains to the patient. Once configured, the implantable medical device delivers the plurality of therapy programs to the patient wherein the therapy programs may overlap in time.
摘要:
Apparatus and method provide flexibility in generating a stimulation waveform to an electrode of an Implantable Neuro Stimulator (INS). The stimulation waveform is synthesized for each rate period interval. Each rate period interval is partitioned into time intervals, during which stimulation pulses, recharging, and time duration delays may be induced. With the embodiment of the invention, a second stimulation pulse, having different electrical characteristics than a first stimulation pulse, may be generated during the rate period interval. An embodiment utilizes apparatus comprising a waveform controller and a waveform generator that are controlled by the waveform controller. The waveform controller uses waveform parameters to instruct the waveform generator to form stimulation pulses. Any of the components may be adjusted or deleted in the generation of the stimulation waveform. The embodiment enables any of the associated waveform parameters to be updated at the waveform controller in order to alter the stimulation waveform.
摘要:
System, method and antenna for an external power source for an implantable medical device having therapeutic componentry and a secondary coil operatively coupled to the therapeutic componentry. A housing has a first surface adapted to be placed closest to the secondary coil of the implantable medical device. A primary coil is operatively coupled to the external power and is capable of inductively energizing the secondary coil, the primary coil being wound forming generally concentric loops having an axis. The housing has a protrusion extending from the first surface.
摘要:
System for transcutaneous energy transfer to an implantable medical device adapted to be implanted under a cutaneous boundary having a housing having a first surface adapted to face the cutaneous boundary, the first surface of the housing of the implantable medical device having a first mating element, therapeutic componentry and a secondary coil operatively coupled to the therapeutic componentry. An external power source has housing having a first surface adapted to be placed closest to the cutaneous boundary, the first surface of the housing of the external power source having a second mating element and a primary coil capable of inductively energizing the secondary coil when externally placed in proximity of the secondary coil. The first mating element and the second mating element are configured to tactilely align the external power source with the implantable medical device.
摘要:
System for transcutaneous energy transfer to an implantable medical device adapted to be implanted under a cutaneous boundary having a housing having a first surface adapted to face the cutaneous boundary, the first surface of the housing of the implantable medical device having a first mating element, therapeutic componentry and a secondary coil operatively coupled to the therapeutic componentry. An external power source has housing having a first surface adapted to be placed closest to the cutaneous boundary, the first surface of the housing of the external power source having a second mating element and a primary coil capable of inductively energizing the secondary coil when externally placed in proximity of the secondary coil. The first mating element and the second mating element are configured to tactilely align the external power source with the implantable medical device.
摘要:
A means for treating breathing disorders by stimulating respiratory muscles or nerves to entrain respiratory systems while leaving respiratory drive intact. Embodiments of the invention employ frequency analysis to determine if appropriate stimulation energy is being applied.
摘要:
A means for treating breathing disorders by stimulating respiratory muscles or nerves to entrain respiratory systems while leaving respiratory drive intact. Embodiments of the invention employ frequency analysis to determine if appropriate stimulation energy is being applied.
摘要:
A means for treating breathing disorders by stimulating respiratory muscles or nerves to entrain respiratory systems while leaving respiratory drive intact. Embodiments of the invention employ frequency analysis to determine if appropriate stimulation energy is being applied.