摘要:
A Wireless LAN Context Control Protocol (WLCCP) is used to establish and manage a wireless network topology and securely manages the “operational context” for mobile stations in a campus network. The WLCCP registration protocol can automatically create and delete links in the network, securely distribute operational context, and reliably establish Layer 2 forwarding paths on wireless links. A single infrastructure node is established as the central control point for each subnet, and enables APs and MNs to select the parent node that provides the “least-cost path” to a backbone LAN. Context messages provide a general-purpose transport for context and management information. WLCCP “Trace” messages facilitate network diagnostic tools. Ethernet or UDP/IP encapsulation can be used for WLCCP messages. Ethernet encapsulation is employed for intra-subnet (e.g. AP-to-AP or AP-to-SCM) WLCCP messages. IP encapsulation is used for inter-subnet WLCCP messages and may also be used for intra-subnet WLCCP messages.
摘要:
A Wireless LAN Context Control Protocol (WLCCP) is used to establish and manage a wireless network topology and securely manages the “operational context” for mobile stations in a campus network. The WLCCP registration protocol can automatically create and delete links in the network, securely distribute operational context, and reliably establish Layer 2 forwarding paths on wireless links. A single infrastructure node is established as the central control point for each subnet, and enables APs and MNs to select the parent node that provides the “least-cost path” to a backbone LAN. Context messages provide a general-purpose transport for context and management information. WLCCP “Trace” messages facilitate network diagnostic tools. Ethernet or UDP/IP encapsulation can be used for WLCCP messages. Ethernet encapsulation is employed for intra-subnet (e.g. AP-to-AP or AP-to-SCM) WLCCP messages. IP encapsulation is used for inter-subnet WLCCP messages and may also be used for intra-subnet WLCCP messages.
摘要:
A Wireless LAN Context Control Protocol (WLCCP) is used to establish and manage a wireless network topology and securely manages the “operational context” for mobile stations in a campus network. The WLCCP registration protocol can automatically create and delete links in the network, securely distribute operational context, and reliably establish Layer 2 forwarding paths on wireless links. A single infrastructure node is established as the central control point for each subnet, and enables APs and MNs to select the parent node that provides the “least-cost path” to a backbone LAN. Context messages provide a general-purpose transport for context and management information. WLCCP “Trace” messages facilitate network diagnostic tools. Ethernet or UDP/IP encapsulation can be used for WLCCP messages. Ethernet encapsulation is employed for intra-subnet (e.g. AP-to-AP or AP-to-SCM) WLCCP messages. IP encapsulation is used for inter-subnet WLCCP messages and may also be used for intra-subnet WLCCP messages.
摘要:
A method and system for handling roaming mobile nodes in a wireless network. The system uses a Subnet Context Manager to store current Network session keys, security policy and duration of the session (e.g. session timeout) for mobile nodes, which is established when the mobile node is initially authenticated. Pairwise transit keys are derived from the network session key. The Subnet Context Manager handles subsequent reassociation requests. When a mobile node roams to a new access point, the access point obtains the network session key from the Subnet Context Manager and validates the mobile node by computing a new pairwise transient key from the network session key.
摘要:
A method and system for handling roaming mobile nodes in a wireless network. The system uses a Subnet Context Manager to store current Network session keys, security policy and duration of the session (e.g. session timeout) for mobile nodes, which is established when the mobile node is initially authenticated. Pairwise transit keys are derived from the network session key. The Subnet Context Manager handles subsequent reassociation requests. When a mobile node roams to a new access point, the access point obtains the network session key from the Subnet Context Manager and validates the mobile node by computing a new pairwise transient key from the network session key.
摘要:
A method for multicast load balancing in a wireless network having a plurality of access points. The method includes setting a maximum Internet protocol multicast bandwidth for the access points, receiving an admissions control request from a client at one of the access points, and determining whether the admissions control request from the client is for an admitted or unadmitted multicast stream at the access point. The access point is responsive to the admissions control request for the admitted multicast stream by servicing the admitted multicast stream and to the admissions control request for the unadmitted multicast stream by servicing the unadmitted multicast stream where the bandwidth required for the unadmitted multicast stream, plus that portion of the access point bandwidth currently used for all existing downlink multicast streams, does not exceed the maximum internet protocol multicast bandwidth for the access point.
摘要:
A method for protecting a wireless network against spoofed MAC address attacks. A database is used for storing MAC address and user identity bindings. When a new request to access the network is received, the MAC address and user identity of the request is compared to the stored MAC address and user identity bindings. If a new request has an existing MAC address, but not the corresponding user identity, then the request will be denied. The bindings database contains the MAC Address, User identity bindings for wireless nodes and/or, for wired nodes. The MAC address, User identity bindings contained in the bindings database may be automatically learned or statically configured.
摘要:
The present invention is contemplates an automatic, secure AP configuration protocol. Public/private keys and public key (PK) methods are used to automatically establish a mutual trust relationship and a secure channel between an AP and at least one configuration server. An AP automatically forwards a location identifier to the configuration server, and the configuration server delivers common, AP specific, and location specific configuration parameters to the AP.
摘要:
A wireless station prepares to roam by pre-authenticating itself with a neighboring access point. The wireless station sends a rekey request, which can include an incremented rekey number. The wireless station receives a rekey response. The rekey response can include the incremented rekey number. Because the wireless station is pre-authenticated, after it roams it only needs to perform a two-way handshake with a new access point to establish secure communications with the new access point. The two-way handshake starts by the wireless station sending a reassociation request to the neighboring access point, the reassociation request comprising the incremented rekey number established during pre-authentication. The wireless station receives a reassociation response from the neighboring access point. To protect against replay attacks, the neighboring access point can verify the rekey number sent in the reassociation request matches the rekey number sent in the rekey response.
摘要:
In an example embodiment, an apparatus such as an RFID tag, is configured to operate in a first mode that allows the tag to associate with the network and receive configuration data and to operate in a second mode wherein the apparatus is not associated with the network. The apparatus sends announcement packets while in the second mode in accordance with the configuration data received while in the first mode of operation.