摘要:
A method, system, and computer-usable medium for implementing a programmable DMA master with date checking utilizing a drone system controller. According to a preferred embodiment of the present invention, a drone processor generates a collection of random data and stores a first and second copy of the collection of random data in a first and second memory location in a drone memory. The drone processor writes a third copy of the collection of random data in a processor memory. When the drone processor retrieves the third copy from the processor memory, the drone processor writes the third copy in the second memory location in the drone memory. When the drone processor compares the first copy with the third copy, the results of the compare is written in a status location within the drone processor.
摘要:
A method, system, and computer-usable medium for implementing a programmable DMA master with data checking utilizing a drone system controller. According to an embodiment of the present invention, a drone processor generates a collection of random data and stores a first and second copy of the collection of random data in a first and second memory location in a drone memory. The drone processor writes a third copy of the collection of random data in a processor memory. When the drone processor retrieves the third copy from the processor memory, the drone processor writes the third copy in the second memory location in the drone memory. When the drone processor compares the first copy with the third copy, the results of the compare is written in a status location within the drone processor.
摘要:
A method, system, and computer-usable medium for implementing a programmable DMA master with data checking utilizing a drone system controller. According to an embodiment of the present invention, a drone processor generates a collection of random data and stores a first and second copy of the collection of random data in a first and second memory location in a drone memory. The drone processor writes a third copy of the collection of random data in a processor memory. When the drone processor retrieves the third copy from the processor memory, the drone processor writes the third copy in the second memory location in the drone memory. When the drone processor compares the first copy with the third copy, the results of the compare is written in a status location within the drone processor.
摘要:
A method, system, and computer-usable medium for implementing a programmable DMA master with data checking utilizing a drone system controller. According to an embodiment of the present invention, a drone processor generates a collection of random data and stores a first and second copy of the collection of random data in a first and second memory location in a drone memory. The drone processor writes a third copy of the collection of random data in a processor memory. When the drone processor retrieves the third copy from the processor memory, the drone processor writes the third copy in the second memory location in the drone memory. When the drone processor compares the first copy with the third copy, the results of the compare is written in a status location within the drone processor.
摘要:
A computer-implementable method, system and computer-usable medium for aiding in debugging operations of a System Under Test (SUT) through the use of an external DRONE card is presented. System test software that is running on the SUT “sets aside” debug/status information in a reserved/dedicated Peripheral Component Interface (PCI) section of system memory in the SUT. This information is communicated between the SUT and a DRONE card via a PCI bus. Debug/status information is thus accessed and manipulated by the DRONE card without disturbing (interrupting) normal operations of the SUT.
摘要:
A method, device, system, and computer program product for enabling advanced control of debugging processes on a JTAG (Joint Test Action Group) IEEE 1149.1 capable device (or system under test (SUT)). Middlesoft Commander is provided within a JTAG-enabled (or JTAG) POD, which is connected to both a host system executing debugging software and the SUT. The communication between the POD and the SUT is enabled with a pair of JTAG interfaces bridging the connection between the POD and the SUT. Middlesoft Commander comprises code that enables Middlesoft Commander to convert high level commands (debug packets) received from (or generated by) the host system into JTAG commands. These JTAG commands are forwarded to the SUT. Middlesoft Commander further comprises code that enables Middlesoft Commander to convert the JTAG data received from the SUT into commands recognizable by the host system.
摘要:
A method, device, system, and computer program product for enabling advanced control of debugging processes on a JTAG (Joint Test Action Group) IEEE 1149.1 capable device (or system under test (SUT)). Middlesoft Commander is provided within a JTAG-enabled (or JTAG) POD, which is connected to both a host system executing debugging software and the SUT. The communication between the POD and the SUT is enabled with a pair of JTAG interfaces bridging the connection between the POD and the SUT. Middlesoft Commander comprises code that enables Middlesoft Commander to convert high level commands (debug packets) received from (or generated by) the host system into JTAG commands. These JTAG commands are forwarded to the SUT. Middlesoft Commander further comprises code that enables Middlesoft Commander to convert the JTAG data received from the SUT into commands recognizable by the host system.