摘要:
An advanced technology frame structure is described herein. The advanced technology frame structure can enhance a first technology frame structure in dimensions of time, frequency, or a combination of time and frequency. A second technology frame structure time division multiplexes second technology subframes with the first technology downlink and uplink subframes. The first technology downlink subframe can be divided into a first technology downlink subframe and one or more second technology downlink subframes. Similarly, the first technology uplink subframe can be divided into a first uplink subframe and one or more second technology uplink subframes. These principles can be expanded upon and can be applied in many communication systems.
摘要:
An advanced technology frame structure is described herein. The advanced technology frame structure can enhance a first technology frame structure in dimensions of time, frequency, or a combination of time and frequency. A second technology frame structure time division multiplexes second technology subframes with the first technology downlink and uplink subframes. The first technology downlink subframe can be divided into a first technology downlink subframe and one or more second technology downlink subframes. Similarly, the first technology uplink subframe can be divided into a first uplink subframe and one or more second technology uplink subframes. These principles can be expanded upon and can be applied in many communication systems.
摘要:
An advanced technology frame structure is described herein. The advanced technology frame structure can enhance a first technology frame structure in dimensions of time, frequency, or a combination of time and frequency. A second technology frame structure time division multiplexes second technology subframes with the first technology downlink and uplink subframes. The first technology downlink subframe can be divided into a first technology downlink subframe and one or more second technology downlink subframes. Similarly, the first technology uplink subframe can be divided into a first uplink subframe and one or more second technology uplink subframes. These principles can be expanded upon and can be applied in many communication systems.
摘要:
An advanced technology frame structure is described herein. The advanced technology frame structure can enhance a first technology frame structure in dimensions of time, frequency, or a combination of time and frequency. A second technology frame structure time division multiplexes second technology subframes with the first technology downlink and uplink subframes. The first technology downlink subframe can be divided into a first technology downlink subframe and one or more second technology downlink subframes. Similarly, the first technology uplink subframe can be divided into a first uplink subframe and one or more second technology uplink subframes. These principles can be expanded upon and can be applied in many communication systems.
摘要:
In a system utilizing double wide communication channels, if a particular CPE requires a sustained rate that is greater than the bandwidth of a single channel, data to and from the CPE may be split across Channels A and B. Also, when the bandwidth requirements of a particular CPE peaks at a data rate greater than the capacity of a single channel, the CPE's data may be split across the two channels. In one embodiment, a single-wide CPE may communicate with the base station without knowing that it is communicating with a base station configured to communicate using a double wide channel.
摘要:
A method and system for prioritizing connection data that is associated with different classes of service for transmission in a frame based communication system. These classes of service can include CBR, nrt-VBR, MGR, and UPR traffic. One embodiment of the scheduling method and system uses hierarchical round-robin (HRR) with deficit round-robin (DRR). In this embodiment, the scheduling method and system guarantees minimum rates of nrt-VBR and MGR traffic to the connections. The excess bandwidth is then fairly allocated between the existing connections and their classes of service. For example, the excess is allocated for UBR traffic and for the excess demands of the nrt-VBR and MGR connections. In one embodiment, the scheduling method and system allocates the excess bandwidth in a frame to the existing connections using weighted round robin to differentiate between different classes of service. In one embodiment, excess allocation to nrt-VBR and MGR connections is rolled back into the deficit counters for the minimum guaranteed rates of nrt-VBR and MGR connections.
摘要:
A method and apparatus for allocating bandwidth in a broadband wireless communication system is disclosed. One embodiment uses a self-correcting bandwidth request/grant protocol. The self-correcting bandwidth request/grant protocol utilizes a combination of incremental and aggregate bandwidth requests. CPEs primarily transmit incremental bandwidth requests to their associated base stations, followed by periodic transmissions of aggregate bandwidth requests. The use of periodic aggregate bandwidth requests (that express the current state of their respective connection queues) allows the bandwidth allocation method and apparatus to be “self-correcting”. Another embodiment utilizes an abridged bandwidth request/grant protocol to allocate bandwidth. The abridged bandwidth request/grant protocol system utilizes padding packets to request a reduction in bandwidth allocation to a CPE. A base station modem alerts a base station CPU when the BS modem receives a padding packet from a CPE. After alerting the BS CPU the method can reduce the associated CPE's bandwidth allocation.
摘要:
A method and system for prioritizing connection data that is associated with different classes of service for transmission in a frame based communication system. These classes of service can include CBR, nrt-VBR, MGR, and UBR traffic. One embodiment of the scheduling method and system uses hierarchical round-robin (HRR) with deficit round-robin (DRR). In this embodiment, the scheduling method and system guarantees minimum rates of nrt-VBR and MGR traffic to the connections. The excess bandwidth is then fairly allocated between the existing connections and their classes of service. For example, the excess is allocated for UBR traffic and for the excess demands of the nrt-VBR and MGR connections. In one embodiment, the scheduling method and system allocates the excess bandwidth in a frame to the existing connections using weighted round robin to differentiate between different classes of service. In one embodiment, excess allocation to nrt-VBR and MGR connections is rolled back into the deficit counters for the minimum guaranteed rates of nrt-VBR and MGR connections.
摘要:
A communication device with the ability to switch from operating as a base station to operating as a subscriber station or from a subscriber station to a base station. This enables point-to-multipoint systems with strong quality of service (Qos) to be developed with features, such as self-healing and self organization, normally only found in mesh systems with weak QoS.
摘要:
The invention relates to communication systems and to systems and methods for implementing adaptive call admission control (CAC) in such systems. Adaptive call admission control can determine what CPE to base station calls (connections) are allowed at any given time. CAC, coupled with precedence, can further determine what connections are suspended if less bandwidth is available than is currently committed. Multiple techniques are disclosed to select connections for suspension. These techniques include suspending enough connections through the affected CPE until there is enough bandwidth to meet the remaining commitment, randomly (or in a round robin fashion) choosing connection to suspend from the entire set of connection, and using precedence priority levels.