摘要:
A medical concept is learned about or inferred from a medical transcript. A probabilistic model is trained from medical transcripts. For example, the problem is treated as a graphical model. Discrimitive or generative learning is used to train the probabilistic model. A mutual information criterion can be employed to identify a discrete set of words or phrases to be used in the probabilistic model. The model is based on the types of medical transcripts, focusing on this source of data to output the most probable state of a patient in the medical field or domain. The learned model may be used to infer a state of a medical concept for a patient.
摘要:
Medical ontology information is used for mining and/or probabilistic modeling. A domain knowledge base may be automatically or semi-automatically created by a processor from a medical ontology. The domain knowledge base, such as a list of disease associated terms, is used to mine for corresponding information from a medical record. The relationship of different terms with respect to a disease may be used to train a probabilistic model. Probabilities of a disease or chance of indicating the disease are determined based on the terms from a medical ontology. This probabilistic reasoning is learned with a machine from ontology information and a training data set.
摘要:
Medical related quality of care information is extracted and edited for reporting. Patient records are mined. The mining may include mining unstructured data to create structured information. Measures are derived automatically from the structured information. A user may then edit the measures, data points used to derive the measures, or other quality metric based on expert review. The editing may allow for a better quality report. Tools may be provided to configure reports, allowing generation of new or different reports.
摘要:
Medical ontology information is used for mining and/or probabilistic modeling. A domain knowledge base may be automatically or semi-automatically created by a processor from a medical ontology. The domain knowledge base, such as a list of disease associated terms, is used to mine for corresponding information from a medical record. The relationship of different terms with respect to a disease may be used to train a probabilistic model. Probabilities of a disease or chance of indicating the disease are determined based on the terms from a medical ontology. This probabilistic reasoning is learned with a machine from ontology information and a training data set.
摘要:
Medical ontology information is used for mining and/or probabilistic modeling. A domain knowledge base may be automatically or semi-automatically created by a processor from a medical ontology. The domain knowledge base, such as a list of disease associated terms, is used to mine for corresponding information from a medical record. The relationship of different terms with respect to a disease may be used to train a probabilistic model. Probabilities of a disease or chance of indicating the disease are determined based on the terms from a medical ontology. This probabilistic reasoning is learned with a machine from ontology information and a training data set.
摘要:
A method, including receiving a data source selection from a user or software application, the data source including medical information of a plurality of patients, receiving, from the user or software application, a data pattern that is related to a concept to be explored in the data source, querying the data source to find information that approximately matches the data pattern; and receiving the information from the data source, wherein the information includes unstructured data, assigning a classification to individual parts of the information based on the part's relationship to the data pattern, and outputting the classified information to the user or software application.
摘要:
A method, including receiving a data source selection from a user or software application, the data source including medical information of a plurality of patients, receiving, from the user or software application, a data pattern that is related to a concept to be explored in the data source, querying the data source to find information that approximately matches the data pattern; and receiving the information from the data source, wherein the information includes unstructured data, assigning a classification to individual parts of the information based on the part's relationship to the data pattern, and outputting the classified information to the user or software application.
摘要:
A system and method for diagnosis and treatment decisions based on information maximization is disclosed. Utilizing patient information as well as clinical records from other patients can reduce the uncertainty in both diagnosis and treatment options. The information maximization may consider additional data such as risk, cost, and comfort in making a proper medical decision.
摘要:
A system and method for diagnosis and treatment decisions based on information maximization is disclosed. Utilizing patient information as well as clinical records from other patients can reduce the uncertainty in both diagnosis and treatment options. The information maximization may consider additional data such as risk, cost, and comfort in making a proper medical decision.
摘要:
A system and method for diagnosis and treatment decisions based on information maximization is disclosed. Utilizing patient information as well as clinical records from other patients can reduce the uncertainty in both diagnosis and treatment options. The information maximization may consider additional data such as risk, cost, and comfort in making a proper medical decision.