Abstract:
The present invention provides a modified interlocking solid composition stick for applying to steel surfaces that are in sliding or rolling-sliding contact. The modified stick comprises a body member with four sides, a first end and an opposed second end, and a nib member attached to the first end of the body member, the nib member having four sides connected by substantially curved side edges. The second end of the body member contains a cavity with substantially curved sidewalls dimensioned to snugly receive a nib member of a corresponding interlocking solid stick. To reduce the likelihood of failure of the nib or cavity, the dimensions of the nib are optimized such that a length of one side of the nib member (nl) and a length of the side of the body member (l) in the same plane have a ratio nl/l from about 0.6 to about 0.75.
Abstract:
A polarization scrambler and a polarization mode dispersion (PMD) compensation system compensate for PMD on an active optic fiber. The polarization scrambler scrambles a state of polarization of an optical signal that carries user information. The PMD compensation system then receives the optical signal over the active optic fiber. The PMD compensation system measuring a differential group delay and principal states of polarization of the PMD in the active optic fiber. The PMD compensation system then determines a modification of the optical signal based on the differential group delay and the principal states of polarization of the PMD. The PMD compensation system modifies the optical signal in the active optic fiber to compensate for PMD based on the determination of the modification. The PMD compensation system then transmits the optical signal. By measuring the differential group delay and the principal states of polarization, the PMD compensation system adapts to changes in the PMD in the active optic fiber.
Abstract:
The present invention provides reduced power dissipation and other benefits at the optical transport network layer by utilizing a digital subcarrier optical network comprising multiple digital subcarrier cross-connect switches. This offers several advantages for optical networks, including spectral efficiency and robustness against signal corruption and consumption of less energy than traditional TDM-based electric switches (OTN/SONET/SDH).
Abstract:
In order to achieving wide dimming range for compact and tubular fluorescent lamps, two novel control approaches are proposed. (i) Novel techniques for suppressing oscillatory effects in the Triac circuit so as to maintain stable Triac operation over a wide firing angle range and (ii) a hybrid dimming control technique in the ballast inverter circuit for achieving wide dimming range from 100% to about 3%. Concerning point (i) both dissipative and non-dissipative energy absorption schemes (EAS) are proposed to suppress the transient effects in the Triac circuit when the Triac is turned on. The essence of the EAS is to ensure that the Triac circuit can be operated in a stable manner without oscillations or inadvertent turn-off. With respect to pint (ii) a hybrid dimming method is proposed in which unlike traditional control methods that use inverter frequency control only for dimming purposes, both dc link voltage and inverter frequency are varied. The essence of the new dimming control is to reduce the range of the inverter frequency variation so that the overall dimming range can be made as wide as possible.
Abstract:
A solid composition stick applicator is provided. The applicator comprises an applicator body having a first and second end, the second end having an opening through which a solid composition stick is dispensed. Within the applicator is housed a helical tension spring having a first spring end and a second spring end, the first spring end, second spring end, or both the first and second spring end held at a fixed position with respect to the applicator body. The helical tension spring is wound around a guide system that is housed within the applicator body. A pushing assembly is attached to the helical tension spring and the pushing assembly is movable from a first position at or near the first end of the applicator body, to a second position at or near the second end of the applicator body. Tension within the helical tension spring is greater in the first position than in the second position thereby urging the pushing assembly towards the second end of the applicator body. The use of a helical tension spring within the applicator greatly increases the life of the applicator under field conditions.
Abstract:
The present invention provides reduced power dissipation and other benefits at the optical transport network layer by utilizing a digital subcarrier optical network comprising multiple digital subcarrier cross-connect switches. This offers several advantages for optical networks, including spectral efficiency and robustness against signal corruption and consumption of less energy than traditional TDM-based electric switches (OTN/SONET/SDH).
Abstract:
A battery pack for an electronic device comprises battery cells, a battery charging circuit, and an energy receiving element adapted to receive power from a planar inductive charging system. The energy receiving element has an inductance and a capacitor is connected to the energy receiving element and forms a resonant tank therewith. A diode rectifier and a DC capacitor are connected to the energy receiving element to provide a rectified DC voltage that can be fed from the energy receiving element to said battery charging circuit. The energy receiving element may comprise a soft magnetic sheet with a coil wound around its edges, or a coil formed on a printed circuit board, or a combination of the two. The energy receiving element may be formed integrally with the battery pack, or may be provided as a separate component that can be added to an existing battery.
Abstract:
A polarization scrambler and a polarization mode dispersion (PMD) compensation system compensate for PMD on an active optic fiber. The polarization scrambler scrambles a state of polarization of an optical signal that carries user information. The PMD compensation system then receives the optical signal over the active optic fiber. The PMD compensation system measuring a differential group delay and principal states of polarization of the PMD in the active optic fiber. The PMD compensation system then determines a modification of the optical signal based on the differential group delay and the principal states of polarization of the PMD. The PMD compensation system modifies the optical signal in the active optic fiber to compensate for PMD based on the determination of the modification. The PMD compensation system then transmits the optical signal. By measuring the differential group delay and the principal states of polarization, the PMD compensation system adapts to changes in the PMD in the active optic fiber.