摘要:
A multi-zone calibration system is disclosed. The multi-zone calibration system calibrates the operating parameters of an optical disk drive over a plurality of zones over an optical media. The optical media, in addition, can have writeable and premastered portions. The operating parameters can be calibrated for each of the media types in each of the zones. Additionally, the operating parameters can be calibrated for each type of operation (e.g., read or write) in each zone.
摘要:
A method of storing calibrated optical parameters is presented. In some embodiments, calibrated optical parameters are stored in place of stored parameters. In some embodiments, averages between the calibrated operating parameters and stored optical parameters are stored. In other embodiments, the stored optical parameters are allowed to vary only by a maximum amount. In some embodiments, if the calibrated parameters vary by more than threshold values, then the calibrated parameters are not stored.
摘要:
A calibration method for an optical disk drive is presented. The operating parameters of an optical disk drive are initially calibrated when the disk drive is produced or during a repair step. The disk drive is then field calibrated during normal operation. Operating parameters can be field calibrated during power up. Further, operating parameters can be field calibrated when a new optical media is inserted into the optical disk drive. Additionally, operating parameters can be field calibrated during error recovery.
摘要:
A system and method for dynamically re-calibrating an optical disc drive during operation is provided. The optical media includes a pitted premastered area that cannot be overwritten and a grooved user-writeable area that can be overwritten. The system can attempt several increasing levels of effort to recalibrate the disc drive until the disc drive reaches a desired level of performance, or the recalibration effort levels are exhausted. During each level of recalibration effort, various calibration values are determined for the optical media and the servo actuator, along with a notch frequency for a notch filter; a focus actuator offset; a tracking actuator offset; a focus control loop gain; and a tracking control loop gain. The optical media disc is divided into zones, and zone calibration tables for each of the zones are generated. Each zone is recalibrated using the corresponding zone calibration table. The calibration values can be stored and used during subsequent recalibration efforts, such as adjusting the focus control loop gain and/or the tracking control loop gain.
摘要:
A head load algorithm for an optical disk drive is presented. On startup, the optical media can be spun up. Then an optical pick-up unit can be positioned at an extreme position, for example at the inner diameter, and focus can be closed. The optical pick-up unit then can be incrementally moved away from the extreme position while the tracking error signal is monitored to locate an area of the optical media with tracks. Once the area is located, a tracking servo system can close on one of the tracks.
摘要:
A system, method, and apparatus for coordinating tasks in a control system for an optical disc drive for optical media with a pitted premastered area that cannot be overwritten and a grooved user-writeable area that can be overwritten. The optical disc drive includes a first processor operable to communicate with a second processor, wherein the first processor includes instructions for performing non-time-critical tasks, and the second processor includes instructions for performing time-critical tasks, such as reading from and writing to optical media in the disc drive. The first processor monitors the status of the time critical tasks in the second processor and transmits commands to perform operations in the second processor. The first processor also controls power mode, manages recovery from errors, controls focus, tracking/seeking, spin, physical sector address (PSA), a laser, adjusts gains, and monitor cartridge load/eject. The first processor can be used to perform other tasks while it is waiting to receive a notice of a new command, a notify event, or a performance event.
摘要:
A calibration for a tracking error signal gain in a tracking servo system of an optical disk drive is presented. The calibration determines the peak-to-peak tracking error signal when the tracking servo system is open, calculates a gain factor in response to the peak-to-peak tracking error signal, and calculates a new tracking error signal gain based on the tracking error signal gain and the gain factor. New tracking error signal gains are calculated until the gain factor is approximately one.
摘要:
A system and method for handling events issued as a result of error conditions in the operation of an optical disc drive include suspending processing of commanded operations in the disc drive while attempting to recover from the error condition. The recovery attempt can include increasing levels of recovery effort, such as dynamically recalibrating various components in the disc drive. The system can also determine whether a previous notice was received for the same error condition. If so, the system can determine whether excessive recovery attempts have been initiated based criteria such as the time between the notices, and/or the number of notices, for the same error condition. The recovery attempts are aborted when they become excessive. If the recovery attempt is successful, the interrupted operation is resumed at the point where the processing was suspended, such as during a write or read command.
摘要:
A device with an optical disk drive with a digital servo system for controlling tracking or focus in an optical disk driver is presented. A servo system according to the present invention includes an optical pick-up with detectors providing optical signals, an analog processor receiving the optical signals and providing a digital signal, and digital processors receiving the digital signal and providing a control signal that controls the position of the optical pick-up unit. The digital processor executes an algorithm that calculates an error signal, provides amplification and biasing to the error signal, provides filtering for the error signal, and computes the control signal. The error signal can be the focus error signal or the tracking error signal. The device can be any device.
摘要:
A digital servo system for controlling tracking or focus in an optical disk driver is presented. A servo system according to the present invention includes an optical pick-up with detectors providing optical signals, an analog processor receiving the optical signals and providing a digital signal, and digital processors receiving the digital signal and providing a control signal that controls the position of the optical pick-up unit. The digital processor executes an algorithm that calculates an error signal, provides amplification and biasing to the error signal, provides filtering for the error signal, and computes the control signal. The error signal can be the focus error signal or the tracking error signal.