Abstract:
An apparatus and method for computing a three dimensional model of a surface of an object are disclosed. At least one directional energy source (106-109) directionally illuminates the object (101). An imaging assembly (104), having at least two spatially separated viewpoints (111,112) at fixed positions relative to each other, records a series of images of the object at each viewpoint when the object is illuminated by the source. At least one localisation template (102,103) having predetermined geometrical features is visible to at least one of the viewpoints simultaneously with the object. The images recorded at the viewpoints are analysed so as to determine the location and pose of each viewpoint relative to the template for each image in the series of images. Photometric data for the object is generated using the calculated location and pose of the viewpoints and the image data. Geometric data comprising an initial three dimensional model of the object is generated by performing stereoscopic reconstruction using optical triangulation. The geometric data and photometric data are then combined to construct the three dimensional model.
Abstract:
An apparatus and method for computing a three dimensional model of a surface of an object are disclosed. At least one directional energy source (106-109) directionally illuminates the object (101). An imaging assembly (104), having at least two spatially separated viewpoints (111,112) at fixed positions relative to each other, records a series of images of the object at each viewpoint when the object is illuminated by the source. At least one localisation template (102,103) having predetermined geometrical features is visible to at least one of the viewpoints simultaneously with the object. The images recorded at the viewpoints are analysed so as to determine the location and pose of each viewpoint relative to the template for each image in the series of images. Photometric data for the object is generated using the calculated location and pose of the viewpoints and the image data. Geometric data comprising an initial three dimensional model of the object is generated by performing stereoscopic reconstruction using optical triangulation. The geometric data and photometric data are then combined to construct the three dimensional model.
Abstract:
A scanner system and corresponding method, the system comprising: a scanner device (1); a target 17) and a processor (21). The scanner device (1) comprises: an emitter (13) for projecting patterned light and a sensor (12) for capturing images of the object (19). The target (17) has predetermined features visible to the sensor simultaneously with the object for enabling the processor to determine the location of the sensor with respect to the object. The generates a three-dimensional model of the object on the basis of images of the object with the patterned light projected thereon. The scanner device further comprises a light source (14) for directionally illuminating the object (19), and the sensor (12) is arranged to capture images of the illuminated object. The processor generates sets of photometric data for the object when illuminated from different directions. The processor combines the geometric data and photometric data to output a model comprising geometric information on the object together with photometric information spatially registered with the geometric information.
Abstract:
A scanner system and corresponding method, the system comprising: a scanner device (1); a target 17) and a processor (21). The scanner device (1) comprises: an emitter (13) for projecting patterned light and a sensor (12) for capturing images of the object (19). The target (17) has predetermined features visible to the sensor simultaneously with the object for enabling the processor to determine the location of the sensor with respect to the object. The generates a three-dimensional model of the object on the basis of images of the object with the patterned light projected thereon. The scanner device further comprises a light source (14) for directionally illuminating the object (19), and the sensor (12) is arranged to capture images of the illuminated object. The processor generates sets of photometric data for the object when illuminated from different directions. The processor combines the geometric data and photometric data to output a model comprising geometric information on the object together with photometric information spatially registered with the geometric information.