摘要:
Software validation is provided for a breakout system having multiple subsystems at the edge of a mobile data network. The software validation utilizes one or more trusted platform modules (TPM) to secure multiple subsystems including virtual machines in the breakout system. Hash values for the software in the various subsystems are placed in Platform Configuration Registers (PCRs) of the TPM. The TPM cryptographically signs quotes, which are a collection of hash values from the PCRs. The breakout system produces an extensible markup language (XML) file with the signed quotes related to the subsystems and sends them to a network management system for verification. The network management system validates the software configured on the breakout system using a public key to access the quotes and compares the values to known good values stored in an inventory record associated with the specific breakout system being validated.
摘要:
Software validation is provided for a breakout system having multiple subsystems at the edge of a mobile data network. The software validation utilizes one or more trusted platform modules (TPM) to secure multiple subsystems including virtual machines in the breakout system. Hash values for the software in the various subsystems are placed in Platform Configuration Registers (PCRs) of the TPM. The TPM cryptographically signs quotes, which are a collection of hash values from the PCRs. The breakout system produces an extensible markup language (XML) file with the signed quotes related to the subsystems and sends them to a network management system for verification. The network management system validates the software configured on the breakout system using a public key to access the quotes and compares the values to known good values stored in an inventory record associated with the specific breakout system being validated.
摘要:
A secure boot is provided for a breakout system having multiple subsystems at the edge of a mobile data network. The secure boot utilizes two trusted platform modules (TPM) to secure multiple subsystems. Further described is utilizing a first TPM to boot a service processor and then utilizing a second TPM to secure boot two additional subsystems. Booting of the final subsystem is accomplished in a two step process which first loads a boot loader and verifies the boot loader, and then second loads an operating system load image and verifies the operating system code.
摘要:
Mobile network services are performed in a mobile data network in a way that is transparent to most of the existing equipment in the mobile data network. The mobile data network includes a radio access network and a core network. A first service mechanism in the radio access network breaks out data coming from a basestation, and performs one or more mobile network services at the edge of the mobile data network based on the broken out data. These services may include caching of data, data or video compression techniques, push-based services, charging, application serving, analytics, security, data filtering, and new revenue-producing services, as well as others. This architecture allows performing new mobile network services at the edge of a mobile data network within the infrastructure of an existing mobile data network.
摘要:
In a mobile data network with a breakout system, when data is broken out, the RLC function is split into two different flows, between the UE and the breakout system and between the breakout system and the RNC. These two flows are processed by different RLC functions that may drift apart and become out of synchronization resulting in errors that diminish the user's quality of experience. Other errors may also occur in communication on these two different flows. The breakout system attempts to correct these errors using data stored locally in communication data structures for the two data flows. If the errors cannot be corrected, the breakout system can initiate an RLC reset into both of these flows to resynchronize the data communication.
摘要:
Mobile network services are performed at the edge in a flat mobile data network in a way that is transparent to most of the existing equipment in the mobile data network to reduce the load and increase efficiency on the mobile data network by breaking out data at the edge based on specific IP data flows. The mobile data network includes a radio access network and a core network. A first service mechanism in the radio access network breaks out data coming from a basestation based on breakout conditions, and performs one or more mobile network services. The second service mechanism determines what traffic satisfies breakout authorization criteria and informs the first service mechanism. The message from the second service mechanism triggers the first service mechanism to perform IP flow based breakout. An overlay network allows the first and second mechanisms to communicate with each other.
摘要:
A breakout system initiates RLC resets to resynchronize data communication to improve quality of experience for the user. Synchronization of radio traffic is monitored and maintained by the breakout system. When data is broken out, the RLC function is split into two different flows, between the UE and the breakout system and between the breakout system and the RNC. When the sequence numbers of the two flows become out of sync the ciphering context will become out of synchronization resulting in errors. The breakout system can initiate an RLC reset into both of these flows to resynchronize the data communication to improve user's quality of experience.
摘要:
Mobile network services are performed at the edge in a flat mobile data network in a way that is transparent to most of the existing equipment in the mobile data network to reduce the load and increase efficiency on the mobile data network by breaking out data at the edge based on specific IP data flows. The mobile data network includes a radio access network and a core network. A first service mechanism in the radio access network breaks out data coming from a basestation based on breakout conditions, and performs one or more mobile network services. The second service mechanism determines what traffic satisfies breakout authorization criteria and informs the first service mechanism. The message from the second service mechanism triggers the first service mechanism to perform IP flow based breakout. An overlay network allows the first and second mechanisms to communicate with each other.
摘要:
In a mobile data network with a breakout system, when data is broken out, the RLC function is split into two different flows, between the UE and the breakout system and between the breakout system and the RNC. These two flows are processed by different RLC functions that may drift apart and become out of synchronization resulting in errors that diminish the user's quality of experience. Other errors may also occur in communication on these two different flows. The breakout system attempts to correct these errors using data stored locally in communication data structures for the two data flows. If the errors cannot be corrected, the breakout system can initiate an RLC reset into both of these flows to resynchronize the data communication.
摘要:
A breakout system initiates RLC resets to resynchronize data communication to improve quality of experience for the user. Synchronization of radio traffic is monitored and maintained by the breakout system. When data is broken out, the RLC function is split into two different flows, between the UE and the breakout system and between the breakout system and the RNC. When the sequence numbers of the two flows become out of sync the ciphering context will become out of synchronization resulting in errors. The breakout system can initiate an RLC reset into both of these flows to resynchronize the data communication to improve user's quality of experience.