Abstract:
A communication network comprises multiple mini-hub terminals for transmitting and receiving information from multiple remote terminals. Some of the multiple mini-hub terminals, and some of the multiple remote terminals are capable of wireless communication respectively with each other through satellite communication means. A co-located terminal is hard wire connected with at least some of the mini-hub terminals. At least some of the terminals includes a flat antenna comprising a ground plane and a substrate forming at least one in flat array antenna mounted relative to the ground plane. The flat array antenna has multiple spaced dipoles formed on the substrate to constitute the array, and a transmission line formed on the substrate connecting the spaced dipoles. The transmission line is for connection with a link to a terminal with which communication is to be affected by signals through the antenna. A mobile antenna has beam steering lenses for forcing the signal. Also provided are sensors located on power transmission lines, the sensor being capable of measuring travelling waves on the lines, and communicating via an array antennal through a satellite at KU, KA-band or L-band frequencies, characteristics of the travelling wave thereby to facilitate fault location on the transmission lines.
Abstract:
A communication network includes multiple mini-hub terminals for transmitting and receiving information from multiple remote terminals. Some of the multiple mini-hub terminals, and some of the multiple remote terminals are capable of wireless communication respectively with each other through satellite communication means. A co-located terminal is hard wire connected with at least some of the mini-hub terminals. At least some of the terminals includes a flat antenna comprising a ground plane and a substrate forming at least one in flat array antenna mounted relative to the ground plane. The flat array antenna has multiple spaced dipoles formed on the substrate to constitute the array, and a transmission line formed on the substrate connecting the spaced dipoles. The transmission line is for connection with a link to a terminal with which communication is to be affected by signals through the antenna. A mobile antenna has beam steering lenses for forcing the signal. Also provided are sensors located on power transmission lines, the sensor being capable of measuring travelling waves on the lines, and communicating via an array antennal through a satellite at KU, KA-band or L-band frequencies, characteristics of the travelling wave thereby to facilitate fault location on the transmission lines.
Abstract:
A satellite communication system between a hub terminal and remote terminals simultaneously uses two or more satellites for communication. Rapid signal acquisition for mobile terminals is achieved by incorporation of a Global Positioning System receiver to establish initial frequency and time references. High resolution time distribution is provided by use of spread spectrum coded signals. A combined Time Division Multiple Access/Code Multiplex architecture receives simultaneous signals of widely varying signal strengths. Rapid and numerous changes to the polling sequence is possible. The hub terminal incorporates two high directivity antennas each illuminating a separate geostationary satellite transponder with a spread spectrum coded signal, each orthogonal to the other. The remote terminals employ an antenna of sufficiently small aperture to enable simultaneous reception of both orthogonal transponder signals. Each remote terminal transmits one signal that illuminates both satellite transponders and is received separately by each hub terminal antenna. All transmissions are synchronized to a precision time frame and are spread spectrum encoded. Multiple remote terminals may transmit simultaneously using orthogonal codes. Block addressing reduces the data bandwidth of the hub terminal. The network architecture allows numerous blocks to be established, each block containing any number of remote terminals and each remote terminal may be assigned to be a member numerous blocks. A single command issued by the hub terminal to a particular block, thereby addresses the multiple remote terminals which are members of that block. In order to demodulate the data received from multiple remote terminals, the hub terminal generates a numerical database that fully represents the composite received signal. Iterative digital signal processing is performed in real-time to establish the code phase of each remote terminal. Initial processing of the database demodulates only strong signals. In an iterative manner, the successfully demodulated signals are subtracted from the database and processing is reperformed to extract the weaker signals.