摘要:
The present invention enables multiple operating territories to be defined, named, and managed within a meter reading system. Each operating territory may correspond to a geographic sub-section of the meter reading system that is regulated by a particular regulatory agency. Each operating territory may be assigned a set of time of use (TOU) schedules required by its corresponding regulatory agency. The set of TOU schedules assigned to each operating territory may be stored in a database.
摘要:
Methods and systems of managing node migration in a wireless network where nodes may spontaneously migrate from a first communication path to a second communication path. The system includes a first collector disposed within the first communication path and a second collector disposed within the second communication path, a network management server that determines a network state and maintains a database of the network state. When the network management server detects that a node has migrated from the first communication path to the second communication path, information associated with the node is retrieved from the first collector and downloaded to the second collector to ensure the proper operation of the node in the network.
摘要:
A number of meters to be configured according to a particular billing rate. Multiple billing rates may be defined, named, and stored for use. Each such billing rate may include time of use (TOU) configuration parameters and/or demand configuration parameters. Alternatively, a billing rate may include strictly consumption based parameters. Each billing rate is “meter independent”, meaning that it is not specific to any particular meter configuration format. The billing rate is defined in a format that is convenient for the operator and then translated into a format that is specific to each meter on which it is implemented. Thus, to configure a number of different parameters on a number of differently formatted meters, only a single billing rate need be defined and propagated to the meters.
摘要:
Techniques for over the air (OTA) microcontroller flash memory updates using a wireless network are disclosed herein. A control node first transmits the microcontroller flash memory update to all devices that can receive the message. Each packet of the message is relayed through multiple communication levels until all devices receive the packet. This starts with communications from the control node to each device node that has a direct communication path to the control node, which are referred to herein as “first level” device nodes. The first level device nodes then relay each communication to each other device node that has a direct communication path to the first level device nodes, which are referred to herein as “second level” device nodes. This process is repeated at each level of the wireless network until each of the plurality of device nodes has received the microcontroller flash memory update.
摘要:
Techniques for over the air (OTA) microcontroller flash memory updates using a wireless network are disclosed herein. A control node first transmits the microcontroller flash memory update to all devices that can receive the message. Each packet of the message is relayed through multiple communication levels until all devices receive the packet. This starts with communications from the control node to each device node that has a direct communication path to the control node, which are referred to herein as “first level” device nodes. The first level device nodes then relay each communication to each other device node that has a direct communication path to the first level device nodes, which are referred to herein as “second level” device nodes. This process is repeated at each level of the wireless network until each of the plurality of device nodes has received the microcontroller flash memory update.