Abstract:
The present invention relates to a method for allocating communication bandwidth between a first terminal of a plurality of terminals and a network device. Wireless communication between the first plurality of terminals and the network device is carried out using a plurality of carrier channels. The communication defines a first bandwidth. The method comprises the steps of receiving the request for change of bandwidth from the first terminal, evaluating current load on carrier channels in use by the first terminal, evaluating priority between all terminals using the carrier channels currently in use by the first terminal, evaluating capacity of all carrier channels available to the first terminal, and allocating a second bandwidth between the network device and the first terminal by allocating a new number of carrier channels. The present invention further relates to a network device and a device for communication.
Abstract:
The invention relates to a method for reducing interference between users in a mobile communications network (1) in which uplink transmissions from user equipment, UE (3), to a radio base station, RBS (5A, 5B), can be performed on at least two different carriers (C1, C2). The UE (3) support dynamic switching between CDM and TDM transmission mode and the RBS (5A, 5B) is arranged to dynamically set the mode of transmission for the UE (3). The method comprises the steps of: identifying (S200) at least a first UE as a high data rate, HDR, UE currently requiring high data transmission rate; dedicating (S201) at least one of said at least two carriers (C1, C2) to said HDR UE for at least a first period of time (T), said at least one carrier (C1, C2) hereinafter being named clean carrier, and allocating (S202) said at least first HDR UE to said clean carrier (C1, C2) during said at least first period of time (T). This method ensures that no UE operating in CDM mode is transmitting on the same carrier at the same time as the HDR UE.
Abstract:
A method and system are disclosed for call case controlled block error rate (BLER) or bit error rate (BER) target setting in WCDMA and other CDMA technologies for Mobile to Mobile (MTM) and Mobile to Public Switched Telephone Network (MTPSTN) communication systems, whereby first an overall BLER/BER target value is defined.
Abstract:
The invention relates to a method for reducing interference between users in a mobile communications network (1) in which uplink transmissions from user equipment, UE (3), to a radio base station, RBS (5A, 5B), can be performed on at least two different carriers (C1, C2). The UE (3) support dynamic switching between CDM and TDM transmission mode and the RBS (5A, 5B) is arranged to dynamically set the mode of transmission for the UE (3). The method comprises the steps of: —identifying (S200) at least a first UE as a high data rate, HDR, UE currently requiring high data transmission rate; dedicating (S201) at least one of said at least two carriers (C1, C2) to said HDR UE for at least a first period of time (T), said at least one carrier (C1, C2) hereinafter being named clean carrier, and—allocating (S202) said at least first HDR UE to said clean carrier (C1, C2) during said at least first period of time (T). This method ensures that no UE operating in CDM mode is transmitting on the same carrier at the same time as the HDR UE.
Abstract:
In a cellular radio system, the number of TDM users per cell is limited. The cellular radio system can be a WCDMA system and in particular a WCDMA system employing an Enhanced Uplink (EUL). Other users in the cell are scheduled using CDM scheduling.
Abstract:
In a cellular radio system, the number of TDM users per cell is limited. The cellular radio system can be a WCDMA system and in particular a WCDMA system employing an Enhanced Uplink (EUL). Other users in the cell are scheduled using CDM scheduling.
Abstract:
The present invention relates to an architectural model of a radio network unit, e.g. a Radio Base Station, that separates functionality in such a way that it is possible to easily adapt the unit to various requirements and conditions. The radio network unit comprises an internal RBS-interface that subdivides the its functionality into a first part, which solely relates to the functionality of the radio network, and a second part, which solely relates to the radio part, i.e. the airborne part of the transmission. The internal interface comprises at least a link that handles the necessary additional communication that arises due to the subdivision and a link that handles the user data that is to be processed, i.e. transmitted or received, by said unit.