摘要:
The above-described methods and apparatus are believed to be of particular benefit for patients suffering heart failure including cardiac dysfunction, chronic HF, and the like and all variants as described herein and including those known to those of skill in the art to which the invention is directed. It will understood that the present invention offers the possibility of monitoring and therapy of a wide variety of acute and chronic cardiac dysfunctions. The current invention provides systems and methods for delivering therapy for cardiac hemodynamic dysfunction via the innervated myocardial substrate receives one or more discrete pulses of electrical stimulation during the refractory period of said innervated myocardial substrate.
摘要:
The present invention provides a system and method for classifying cardiac beats based on activation-recovery intervals (ARIs) or an ARI-related parameter such as the spatial dispersion of activation, recovery or ARIs. The beat classification method may be used in monitoring and detecting cardiac rhythms and/or for controlling a cardiac stimulation therapy. The beat classification method includes acquiring a reference ARI for one or more known types of cardiac beats; measuring the activation-recovery interval of an unknown cardiac beat during cardiac activity monitoring; comparing the measured activation-recovery interval to the stored reference ARI(s); and classifying the cardiac beat based on the comparison between the measured ARI and the reference ARI(s).
摘要:
The present invention relates to the secure delivery of an extra-systolic stimulation (ESS) therapy to treat cardiac dysfunction that employs atrial and/or ventricular extra-systoles via pacing-like stimulation of the heart. These extra-systoles must be timed correctly to achieve beneficial effects on myocardial mechanics (benefit) while maintaining an extremely low level of risk of arrhythmia induction and excellent ICD-like arrhythmia sensing and detection (security). Further experience with ESS has led to improved implementation methods that depend on better blanking, ESS stimulation timing (of an “extra-systolic interval” or ESI), and ESS therapy delivery options and guidance. These methods may be employed individually or in combinations in an external or implantable ESS therapy delivery device.
摘要:
An extra-systolic stimulation (ESS) therapy addresses cardiac dysfunction including heart failure. ESS therapy employs atrial and/or ventricular extra-systoles via pacing-level stimulation to a heart. These extra-systoles must be timed correctly to achieve beneficial effects on myocardial mechanics (efficacy) while maintaining an extremely low level of risk of arrhythmia induction and excellent ICD-like arrhythmia sensing and detection (security). The present invention relates to therapy delivery guidance and options for improved ESS therapy delivery. These methods may be employed individually or in combinations in an external or implantable ESS therapy delivery device.
摘要:
An implantable medical device (IMD) communicates with an external processing unit by transmitting device data and configuration information that describes the device data. The external processing unit processes the device data for display based on the configuration information. The IMD notifies the external processing unit of a change to characteristics of the device data by transmitting the changed device data and updated configuration information.
摘要:
Techniques for estimating the temporal refractory period of a heart, for adjusting a parameter for delivery of extra-systolic stimulation (ESS) therapy and for detecting an arrhythmia during delivery of ESS therapy are disclosed. In some embodiments, probe pulses are periodically delivered to estimate the location of the end boundary of the refractory period, and accordingly estimate its length. In some embodiments, the parameter is adjusted based on estimated length of the refractory period. For example, an extra-systolic interval (ESI) for delivery of ESS is adjusted to be a fixed interval longer than estimated lengths of the refractory period. In other embodiments, the parameter is adjusted based on a measured delay (or latency) between delivery of an ESS pulse and detection of an evoked response resulting from the pulse. In some embodiments, delays between delivery of an ESS pulse and detection of a subsequent depolarization are monitored to detect an arrhythmia.