Abstract:
A displacement detector capable of making a measurement in two directions of measurement 180 degrees different from each other without the need of a switching operation has been disclosed. This displacement detector comprises a contact arm 41 supported rotatably at a fulcrum of extension and rotation 43, first and second contacts 42A, 42B provided to the contact arm, first and second arms 21A, 21B each one end of which comes into contact with the contact arm 41, a first detection element 25 of the first arm, a second detection element 26 of the second arm, a detection section that detects the positional relationship between the first and second detection elements, a first biasing means 24A of the first arm, a second biasing means 24B of the second arm, a first stopper 30A of the first arm, and a second stopper 30B of the second arm, and a reference rotation position is a state in which the first and second arms are in contact with the first and second stoppers and also in contact with the contact arm, and when the contact arm rotates from the reference rotation position in a first or second direction, the first or second arm enters a free state.
Abstract:
According to the present invention, a center deviation amount, which is an amount of deviation (distance) between the center line of a reference measurement target and the detection point is calculated using the reference measurement target having a known diameter, and a measurement value of a diameter of an arbitrary measurement target is corrected using the center deviation amount. Therefore, an accurate diameter value can be calculated even in the case of a measurement target having a diameter value different from the diameter value of the reference measurement target.
Abstract:
A displacement detector capable of making a measurement in two directions of measurement 180 degrees different from each other without the need of a switching operation has been disclosed. This displacement detector comprises a contact arm 41 supported rotatably at a fulcrum of extension and rotation 43, first and second contacts 42A, 42B provided to the contact arm, first and second arms 21A, 21B each one end of which comes into contact with the contact arm 41, a first detection element 25 of the first arm, a second detection element 26 of the second arm, a detection section that detects the positional relationship between the first and second detection elements, a first biasing means 24A of the first arm, a second biasing means 24B of the second arm, a first stopper 30A of the first arm, and a second stopper 30B of the second arm, and a reference rotation position is a state in which the first and second arms are in contact with the first and second stoppers and also in contact with the contact arm, and when the contact arm rotates from the reference rotation position in a first or second direction, the first or second arm enters a free state.
Abstract:
A detector supporting mechanism comprising a first arm having its one end fixed on a mount linearly movable relative to a workpiece, the first arm having a rotation axis at the other end and a second arm provided on the first arm so as to be turnable on the rotation axis relative to the first arm, a detector being mounted on a tip of the second arm, wherein the rotation axis is provided on a plane inclined at an angle of 45° from the movement axis of the mount while being inclined at an angle of 45° from the movement axis of the mount in a projection on a plane which is inclined at an angle of 45° from the plane inclined at an angle of 45° from the movement axis of the mount, and which contains the movement axis of the mount, and wherein an axis of the detector mounted on the second arm intersects the rotation axis.
Abstract:
A detector supporting mechanism comprising a first arm having its one end fixed on a mount linearly movable relative to a workpiece, the first arm having a rotation axis at the other end and a second arm provided on the first arm so as to be turnable on the rotation axis relative to the first arm, a detector being mounted on a tip of the second arm, wherein the rotation axis is provided on a plane inclined at an angle of 45° from the movement axis of the mount while being inclined at an angle of 45° from the movement axis of the mount in a projection on a plane which is inclined at an angle of 45° from the plane inclined at an angle of 45° from the movement axis of the mount, and which contains the movement axis of the mount, and wherein an axis of the detector mounted on the second arm intersects the rotation axis.