Abstract:
Improvements in a rotor runout and concentricity jig that mimics the runout and/or concentricity of an axle of a vehicle that can be transferred to a rotor. The jig uses discs with high and low points and/or two eccentric tubes. The parts can be adjusted from in-phase to out of phase to duplicate the characteristics of the axle. The adjustments have incremental detents that correspond with the imperfections of the axle to rotor. The position of the rotor is marked on the axle and the rotor to ensure that the rotor is placed onto the axle in the exact same location. The axle and the rotor are cleaned, reinstalled and measured for runout and concentricity. The rotor is then removed and inaccuracies for runout and/or concentricity are transferred to the jig for machining the rotor.
Abstract:
A roundness measuring machine includes: a base; a table rotatable relative to the base; a probe configured to scan a surface of a workpiece mounted on the table; a motor configured to rotate the table; and a control device configured to control a rotation of the motor. The control device includes: a starting current detector configured to detect a starting current of the motor; and an acceleration/deceleration time setting unit configured to detect at least one of acceleration time and deceleration time for the motor in accordance with the starting current. The roundness measuring machine can suitably set the acceleration time and the deceleration time for the motor corresponding to the inertia moment of the workpiece mounted on the table.
Abstract:
A sensor is placed on a plate lowered into the hollow of the shaft and guided by taut wires between a lower attachment device and an upper motorized winder. The deformations, responsible for measurement errors and caused either by static deformations, produced by the weight or poor construction of the apparatus, or by vibrations, are to a large extent eliminated.
Abstract:
A spherical-form measuring apparatus includes a turntable 5, a holding unit 10 for holding the sphere 20, and a probe 6 for measuring a contour of a sphere part 22 of the sphere 20. The holding unit 10 includes a base part 12, a vertical holding part 14 and an inclined holding part 16 which are placed at separate positions on the base part 12. The vertical holding part 14 holds the stem part 24 of the sphere 20 with it set in a direction perpendicular to the turntable 5. The inclined holding part 16 holds the stem part 24 with it set in a direction at an angle. The vertical and inclined holding part 14, 16 are disposed such that their axial lines meet at an intersection point P and such that the distance from the point P to the vertical holding part 14 agrees with the distance from the point P to the inclined holding part 16.
Abstract:
A sensor is placed on a plate lowered into the hollow of the shaft and guided by taut wires between a lower attachment device and an upper motorised winder. The deformations, responsible for measurement errors and caused either by static deformations, produced by the weight or poor construction of the apparatus, or by vibrations, are to a large extent eliminated.
Abstract:
A circumference measuring gauge for measuring an item is shown and described. The circumference measuring gauge may include a base, a fixture displaceably positioned on the base, the fixture capable of securing the item, and a measuring member having first and second ends, the first end fixed to the base and the second end fixed to the fixture, where the measuring member circumscribes the item. The circumference measuring gauge may also include a biasing member secured to the fixture, wherein the biasing member applies a predetermined force to the measuring member.
Abstract:
A calibration device for gauges for the measurement of the geometrical characteristics of cylinders, such as the diameter, profile, rotundity and eccentricity errors, wherein such gauges include a pair of movable opposing arms equipped with feelers or sensors at their free ends, includes a pair of abutments reciprocally approachable and/or withdrawable by means of motors until a sample measure is obtained, as desired, within the measuring range of the gauge, on which the calibration device is assembled, revealed by means of measuring means cooperating with the abutments, such that consequently the feelers or sensors are respectively abutted or approached to the abutments to reveal the sample measure.
Abstract:
The apparatus of measuring a workpiece according to the present disclosure includes a base, a measuring member, an upper arm member, a lower arm member, a first pin and a second pin, wherein the upper arm member includes an upper rotation frame and the lower arm member includes a lower rotation frame. When the first pin is moved to disconnect the upper rotation frame from the lower rotation frame, the upper rotation frame is rotatable. When the second pin is moved to lock the lower rotation frame to the measuring member, the lower rotation frame is free of rotation. When the first pin is moved to connect the upper rotation frame and the lower rotation frame with each other and when the second pin is moved to unlock the lower rotation frame from the measuring member, the lower rotation frame is rotatable with the upper rotation frame.
Abstract:
A system (12) for measuring geometry of a non-circular twisted strand (10) during a stranding process, the system comprising: a pulley (14), for being rotated by linear displacement of the strand (10) induced by the stranding process; a first encoder (16), for measuring the rotation of the pulley (14), thereby measuring the linear displacement of the strand (10); at least one embracing element (36), for embracing a vertex (38) or another zone (48) of the strand (10), for being rotated perpendicular (60) to the longitudinal position (58) of the strand (10), the embracing obtained by the non-circular character of the strand (10) rather than by friction, thereby allowing sliding the at least one embracing element (36) therealong; and a second encoder (20), for measuring the rotation of the at least one embracing element (36), thereby measuring the twist character of the strand (10).
Abstract:
A two way roundness device can be configured as a device in which a tool, such as an indicator rotates or as a device in which the part to be measured or cut rotates. This ability to alternate between these two configurations is enabled by a combination of a rotating spindle assembly and a two-axis stage that can be oriented, in use, with the two-axis stage under the spindle assembly or with the two-axis stage on top of the spindle assembly.