摘要:
A magnetic resonance imaging apparatus and the magnet apparatus thereof comprise plural pairs of magnetic field generation sources, arranged face to face with each other, for forming a magnetic field space 3; and magnetic field homogeneity adjusting apparatuses 17 and 18 for providing homogeneity adjustment of the magnetic field formed in the magnetic field space 3. The magnetic field homogeneity adjusting apparatuses 17 and 18 contain a plurality of tapped holes 24 for installing a magnetic field homogeneity adjusting member 26 of smaller volume in a plate-formed tray made of a non-magnetic substance; and a plurality of mounts 25 for installing the magnetic field homogeneity adjusting member 27 of greater volume, these mounts being formed over the area containing a plurality of through-holes for permitting installation of a magnetic field homogeneity adjusting member 26 of smaller volume, whereby major magnetic field adjusting work can be performed independently of minor magnetic field adjusting work.
摘要:
A magnetic resonance imaging apparatus and the magnet apparatus thereof comprise plural pairs of magnetic field generation sources, arranged face to face with each other, for forming a magnetic field space 3; and magnetic field homogeneity adjusting apparatuses 17 and 18 for providing homogeneity adjustment of the magnetic field formed in the magnetic field space 3. The magnetic field homogeneity adjusting apparatuses 17 and 18 contain a plurality of tapped holes 24 for installing a magnetic field homogeneity adjusting member 26 of smaller volume in a plate-formed tray made of a non-magnetic substance; and a plurality of mounts 25 for installing the magnetic field homogeneity adjusting member 27 of greater volume, these mounts being formed over the area containing a plurality of through-holes for permitting installation of a magnetic field homogeneity adjusting member 26 of smaller volume, whereby major magnetic field adjusting work can be performed independently of minor magnetic field adjusting work.
摘要:
In a gradient magnetic field coil device including: a plurality of main coils generating in an imaging region of a magnetic field resonance imaging device a magnetic field distribution in which an intensity linearly inclines; and a plurality of shield coils, arranged on an opposite side of the imaging region across the main coils, suppressing residual magnetic field generated by the main coils on the opposite side. The plurality of main coils and the plurality of shield coils are connected in series. The device further includes a plurality of current adjusting devices, connected to the shield coils in parallel, independently adjusting currents flowing through the shield coils, respectively, to enhance symmetry of the residual magnetic field. The gradient magnetic field coil device is provided which can suppress generation of eddy current magnetic field even if there is a relative position deviation between the main coils and shield coils.
摘要:
A superconducting magnet includes: a superconducting coil for generating a static magnetic field; a refrigerant container for containing the superconducting coil and a refrigerant; a vacuum container for holding the refrigerant container in a vacuum state; a radiation shield between the refrigerant container and the vacuum container; a refrigerator for re-liquidfying the refrigerant; and a dynamic magnetic field shield. The refrigerator includes: first and second regenerative refrigerants. The dynamic magnetic field shield is an electric good conductor and arranged around the first regenerative refrigerant along a motion axis of the first regenerative refrigerant, wherein a direction of the motion axis is aligned with a direction of a magnetic force line of the static magnetic field at the first regenerative refrigerant.
摘要:
The active shield superconducting electromagnet apparatus includes: a main switching circuit in which first and second main coils, first and second shield coils, and a first superconducting persistent current switch are connected in series; a sub switching circuit in which a bypass circuit, in which a superconducting fault current limiter and a second superconducting persistent current switch are connected in series, are connected to a series circuit of the first main coil and the second main coil in parallel; a first closed circuit in which at least one of the first main coil and the first shield coil, and a first quench protection circuit are connected in series; and a second closed circuit in which one of the second main coil and the second shield coil, and a second quench protection circuit are connected in series.
摘要:
On the basis of the magnetic field intensity distribution of a magnetic field space (3), in order to homogenize the distribution, the positions and the volumes of magnetic material shims (such as shim bolts (27)) which have to be arranged on shim trays (17, 18) are first computed on a minute computational grid. Subsequently, from the distributions of the computed positions and volumes of the magnetic material shims, the local maximum values and local minimum values thereof are extracted, and the distribution areas of the volumes of the magnetic material shims with each value as the center are extracted. Then, the volumes of the magnetic materials distributed in the distribution areas are added. Finally, the results of the addition are displayed with the positions of corresponding local maximum values or the positions of corresponding local minimum values.
摘要:
In a gradient magnetic field coil device including: a plurality of main coils generating in an imaging region of a magnetic field resonance imaging device a magnetic field distribution in which an intensity linearly inclines; and a plurality of shield coils, arranged on an opposite side of the imaging region across the main coils, suppressing residual magnetic field generated by the main coils on the opposite side. The plurality of main coils and the plurality of shield coils are connected in series. The device further includes a plurality of current adjusting devices, connected to the shield coils in parallel, independently adjusting currents flowing through the shield coils, respectively, to enhance symmetry of the residual magnetic field. The gradient magnetic field coil device is provided which can suppress generation of eddy current magnetic field even if there is a relative position deviation between the main coils and shield coils.
摘要:
A superconducting magnet includes: a superconducting coil for generating a static magnetic field; a refrigerant container for containing the superconducting coil and a refrigerant; a vacuum container for holding the refrigerant container in a vacuum state; a radiation shield between the refrigerant container and the vacuum container; a refrigerator for re-liquidfying the refrigerant; and a dynamic magnetic field shield. The refrigerator includes: first and second regenerative refrigerants. The dynamic magnetic field shield is an electric good conductor and arranged around the first regenerative refrigerant along a motion axis of the first regenerative refrigerant, wherein a direction of the motion axis is aligned with a direction of a magnetic force line of the static magnetic field at the first regenerative refrigerant.
摘要:
A magnet device has main coils in a pair positioned facing each other to form a static magnetic field space in between and external magnetic flux shielding coils placed coaxially to the main coils. The external magnetic flux shielding coils have a first coil group having a small coefficient of coil coupling and a second coil group having a coefficient of coil coupling greater than that of the first coil group. The first coil group is connected in series to the second coil group. External magnetic flux entering the magnetic field imaging space formed by main coils in a pair positioned facing each other is effectively warded off.
摘要:
A measured error magnetic field distribution is divided into eigen-mode components obtained by a singular decomposition and iron piece arrangements corresponding to respective modes are combined and arranged on a shim-tray. An eigen-mode to be corrected is selected in accordance with an attainable magnetic field accuracy (homogeneity) and appropriateness of arranged volume of the iron pieces. Because the adjustment can be made with the attainable magnetic field accuracy (homogeneity) being known, an erroneous adjustment can also be known, and the adjustment is automatically done during repeated adjustments. As a result, an apparatus with a high accuracy can be provided. In addition, there is an advantageous effect of being able to detect a poor magnet earlier by checking the attainable homogeneity.