Abstract:
Disclosed herein is a flame retardant composition comprising 20 to 80 weight percent of a polycarbonate; 1 to 20 weight percent of a laser activatable additive; the laser activatable additive being operative to plate the flame retardant composition upon being activated by a laser; and 1 to 20 weight percent of a phosphazene compound; where all weight percents are based on the total weight of the flame retardant composition. Disclosed herein too is a method comprising blending 20 to 80 weight percent of a polycarbonate; 1 to 20 weight percent of a laser activatable additive; the laser activatable additive being operative to plate the flame retardant composition upon being activated by a laser; and 1 to 20 weight percent of a phosphazene compound to produce a flame retardant composition; where all weight percents are based on the total weight of the flame retardant composition; and extruding the flame retardant composition.
Abstract:
Disclosed herein is a flame retardant composition comprising 20 to 80 weight percent of a polycarbonate; 1 to 20 weight percent of a laser activatable additive; the laser activatable additive being operative to plate the flame retardant composition upon being activated by a laser; and 1 to 20 weight percent of a phosphazene compound; where all weight percents are based on the total weight of the flame retardant composition. Disclosed herein too is a method comprising blending 20 to 80 weight percent of a polycarbonate; 1 to 20 weight percent of a laser activatable additive; the laser activatable additive being operative to plate the flame retardant composition upon being activated by a laser; and 1 to 20 weight percent of a phosphazene compound to produce a flame retardant composition; where all weight percents are based on the total weight of the flame retardant composition; and extruding the flame retardant composition.