Abstract:
A sensing device includes a touch panel including first and second sensor electrodes, and a touch panel controller acquiring a sensing signal from the touch panel and detecting a user input based on the sensing signal. The touch panel controller acquires the sensing signal from at least one of the first sensor electrodes and the second sensor electrodes in a first mode operating at a first power. The touch panel controller selects a first transmitting electrode, a second transmitting electrode, and receiving electrodes from one of the first sensor electrodes and the second sensor electrodes, inputs a first driving signal to the first transmitting electrode, and inputs a second driving signal having a phase difference of 180 degrees with respect to the first driving signal to the second transmitting electrode in a second mode operating at a second power and a third mode in which a sensing operation is performed.
Abstract:
A sensing device includes a touch panel including first and second sensor electrodes, and a touch panel controller acquiring a sensing signal from the touch panel and detecting a user input based on the sensing signal. The touch panel controller acquires the sensing signal from at least one of the first sensor electrodes and the second sensor electrodes in a first mode operating at a first power. The touch panel controller selects a first transmitting electrode, a second transmitting electrode, and receiving electrodes from one of the first sensor electrodes and the second sensor electrodes, inputs a first driving signal to the first transmitting electrode, and inputs a second driving signal having a phase difference of 180 degrees with respect to the first driving signal to the second transmitting electrode in a second mode operating at a second power and a third mode in which a sensing operation is performed.
Abstract:
Provided are a semiconductor device and a semiconductor system, which can increase immunity against noises through tertiary correlated double sampling (CDS). The semiconductor device includes an amplifier that receives noise and a driving signal, resets for each predetermined period of the driving signal and samples the noise to generate first sampled noise. The first sampled noise includes multiple noise differences each occurring between consecutive reset points. A sampler performs second sampling and third sampling on the first sampled noise and performs fourth sampling on the second and third sampled noises. The first sampled noise includes first to third noise differences, the second sampled noise is a difference between the first and second noise differences, the third sampled noise is a difference between the second and third noise differences, and the fourth sampled noise is a difference between the second and third sampled noises.