Abstract:
Disclosed is a liquid crystal composition including at least one compound selected from the group consisting of a liquid crystal compound expressed by Formula 1-1 and a liquid crystal compound expressed by Formula 1-2; at least one compound selected from the group consisting of a self-alignment compound expressed by Formula 2-1 and a self-alignment compound expressed by Formula 2-2; and at least one compound selected from the group consisting of a reactive mesogen expressed by Formula 3-1, a reactive mesogen expressed by Formula 3-2, a reactive mesogen expressed by Formula 3-3, a reactive mesogen expressed by Formula 3-4, and a reactive mesogen expressed by Formula 3-5. The liquid crystal composition also has negative dielectric anisotropy.
Abstract:
A display device including: a liquid crystal panel assembly including pixels; a data driver applying a data voltage to lines which is connected to the pixels; and a common voltage generator providing voltage to the liquid crystal panel assembly, in which the voltage is an optimal voltage for a maximum grayscale at which a flicker is minimized while a maximum grayscale is applied to the pixels, the data driver applies the data voltage with the minimum grayscale to the data lines so that a negative data voltage with a minimum grayscale is higher than the common voltage by a first voltage level or more, and each of the pixels includes a first subpixel and a second subpixel, and when the data voltage is applied to the pixel, a pixel voltage of the first subpixel and a pixel voltage of the second subpixel are different.
Abstract:
A display device and method of manufacturing same includes: a display panel having a pixel area and a peripheral area adjacent to the pixel area, a light control layer disposed on the display panel and at least partially overlapping the pixel area, a light blocking portion at least partially overlapping the peripheral area, and a protective layer disposed between the light control layer and the light blocking portion.
Abstract:
A display device and method of manufacturing same includes: a display panel having a pixel area and a peripheral area adjacent to the pixel area, a light control layer disposed on the display panel and at least partially overlapping the pixel area, a light blocking portion at least partially overlapping the peripheral area, and a protective layer disposed between the light control layer and the light blocking portion.
Abstract:
A display device including a liquid crystal panel assembly including a plurality of pixels, a data driver applying a data voltage to a plurality of data lines which is connected to the plurality of pixels, and a common voltage generator providing a common voltage to the liquid crystal panel assembly, in which the common voltage is an optimal common voltage for a maximum grayscale at which a flicker is minimized while a data voltage with a maximum grayscale is applied to the plurality of pixels.
Abstract:
A display device including a first substrate, a second substrate facing the first substrate, and a liquid crystal layer provided between the first substrate and the second substrate. The liquid crystal layer has a value of rotation viscosity (γl)/bending modulus of elasticity (K33) of about 6.0 to about 6.4 mPa*s/pN.
Abstract:
A method of driving a display panel, the method including generating a data signal including a black voltage signal and a white voltage signal, measuring brightness levels of pixels, converting differences between the measured brightness levels into direct current (DC) voltages, resetting the black voltage signal to reduce a difference between the DC voltages, generating a data voltage based on the data signal to output the data voltage to the display panel, and displaying an image on the display panel based on the data voltage.
Abstract:
The display panel includes an upper display substrate including a plurality of pixel areas and a light blocking area, a lower display substrate. The upper display substrate includes a base substrate, a barrier part overlapping the light blocking area and disposed on the base substrate, a light blocking layer including a first light blocking portion disposed on the barrier part and a second light blocking portion disposed on the same layer as the barrier part to respectively overlap the pixel areas, a reflection layer including a first reflection portion disposed on the first light blocking portion and a second reflection portion disposed on the second light blocking portion, and a light control layer overlapping the pixel areas and disposed on the reflection layer. A plurality of openings passing through the second light blocking portion and the second reflection portion are defined in each of the pixel areas.
Abstract:
Disclosed is a liquid crystal composition including at least one compound selected from the group consisting of a liquid crystal compound expressed by Formula 1-1 and a liquid crystal compound expressed by Formula 1-2; at least one compound selected from the group consisting of a self-alignment compound expressed by Formula 2-1 and a self-alignment compound expressed by Formula 2-2; and at least one compound selected from the group consisting of a reactive mesogen expressed by Formula 3-1, a reactive mesogen expressed by Formula 3-2, a reactive mesogen expressed by Formula 3-3, a reactive mesogen expressed by Formula 3-4, and a reactive mesogen expressed by Formula 3-5. The liquid crystal composition also has negative dielectric anisotropy.
Abstract:
A liquid crystal composition includes a first compound represented by the following Chemical Formula 1 and a second compound represented by the following Chemical Formula 2. (herein, in Chemical Formula 1, R1 is an alkenyl group including a double bond and R2 is an alkyl group or an alkoxy group, and in Chemical Formula 2, R and R′ are each independently an alkyl group or an alkoxy group).