Abstract:
An apparatus includes an antenna array having multiple antenna elements arranged in multiple sub-arrays. The antenna elements are arranged in at least two different types of sub-arrays. The at least two different types of sub-arrays have substantially orthogonal electric field (E-field) orientations. The antenna elements can be arranged in multiple patch sub-arrays and multiple substrate integrated waveguide (SIW) sub-arrays, and the patch sub-arrays can be interleaved with the SIW sub-arrays. Each patch sub-array can include at least two patch antenna elements coupled in series, and each SIW sub-array can include a conductive plate and multiple slots in the conductive plate. The SIW sub-arrays can resonate at substantially a same frequency as the patch sub-arrays.
Abstract:
For use in a wireless network, an apparatus for use in a wireless network includes an antenna having (i) a first patch element with two opposite corners truncated and (ii) a first microstrip line connected to a first side of the first patch element and configured to feed the first patch element. The first microstrip line forms an angle of substantially 45° with the first side of the first patch element. The antenna could also include (i) a second patch element with two opposite corners truncated and (ii) a second microstrip line connected to a side of the second patch element. The second microstrip line could form an angle of substantially 45° with the side of the second patch element. The patch elements could be series-coupled and form an antenna array. One patch element could represent a host patch element, and another patch element could represent a parasitic patch element.
Abstract:
A system includes an antenna array and a transceiver configured to communicate wirelessly via the antenna array. The antenna array includes a substrate having first and second ground plates. The antenna array also includes multiple substrate integrated waveguide (SIW) antenna elements located along an edge of the substrate. The antenna array further includes feed lines configured to provide signals to the antenna elements and receive signals from the antenna elements. Each antenna element includes a waveguide between the first and second ground plates and enclosed by vias through the substrate, where the waveguide has one open edge along the edge of the substrate. The system could include multiple antenna arrays, where each antenna array includes multiple SIW antenna elements and the antenna arrays are located along different edges of the substrate.
Abstract:
For use in a wireless network, an apparatus for use in a wireless network includes an antenna having (i) a first patch element with two opposite corners truncated and (ii) a first microstrip line connected to a first side of the first patch element and configured to feed the first patch element. The first microstrip line forms an angle of substantially 45° with the first side of the first patch element. The antenna could also include (i) a second patch element with two opposite corners truncated and (ii) a second microstrip line connected to a side of the second patch element. The second microstrip line could form an angle of substantially 45° with the side of the second patch element. The patch elements could be series-coupled and form an antenna array. One patch element could represent a host patch element, and another patch element could represent a parasitic patch element.
Abstract:
An apparatus includes an antenna element. The antenna element includes a first portion of a multi-layer printed circuit board (PCB) and a cap covering at least part of the first portion of the multi-layer PCB. The multi-layer PCB includes multiple substrates, and the first portion of the multi-layer PCB includes a first slot through the multiple substrates. The cap includes a second slot and defines a space between the first portion of the multi-layer PCB and the cap. The cap and a conductive layer of the multi-layer PCB form a waveguide structure through which wireless signals radiate from the antenna element.
Abstract:
A system includes an antenna array and a transceiver configured to communicate wirelessly via the antenna array. The antenna array includes a substrate having first and second ground plates. The antenna array also includes multiple substrate integrated waveguide (SIW) antenna elements located along an edge of the substrate. The antenna array further includes feed lines configured to provide signals to the antenna elements and receive signals from the antenna elements. Each antenna element includes a waveguide between the first and second ground plates and enclosed by vias through the substrate, where the waveguide has one open edge along the edge of the substrate. The system could include multiple antenna arrays, where each antenna array includes multiple SIW antenna elements and the antenna arrays are located along different edges of the substrate.
Abstract:
An apparatus includes an antenna element. The antenna element includes a first portion of a multi-layer printed circuit board (PCB) and a cap covering at least part of the first portion of the multi-layer PCB. The multi-layer PCB includes multiple substrates, and the first portion of the multi-layer PCB includes a first slot through the multiple substrates. The cap includes a second slot and defines a space between the first portion of the multi-layer PCB and the cap. The cap and a conductive layer of the multi-layer PCB form a waveguide structure through which wireless signals radiate from the antenna element.