Abstract:
Provided are a transmitting apparatus, a receiving apparatus and methods of controlling these apparatuses. The transmitting apparatus includes: a structurer configured to generate a transmission stream comprising an orthogonal frequency division multiplexing (OFDM) symbol and add signaling data to the transmission stream; and a transmitter configured to insert at least one pilot into the OFDM symbol, determine a number of active carriers to be included in a frequency spectrum, corresponding to the OFDM symbol into which the pilot is inserted, which exists in a preset spectrum mask, and map the OFDM symbol, into which the pilot is inserted, onto the active carriers of the determined number, and transmit the mapped OFDM symbol.
Abstract:
Provided are a transmitter, receiver and method of transmitting and receiving Orthogonal Frequency-Division Multiplexing (OFDM) symbols. The transmitter includes: a sub carrier grouping part configured to perform grouping of a plurality of sub carriers into a plurality of groups, and to change phases and/or amplitudes of the plurality of sub carriers by group; and a transmitting part configured to generate at least one OFDM symbol from the plurality of sub carriers of which the phases and/or the amplitudes have been randomly changed by group, and to transmit the OFDM symbol and information about the grouping.
Abstract:
A transmitting apparatus is provided. The transmitting apparatus includes: a frame generator configured to generate a frame including a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and a guard interval (GI) inserter configured to insert GIs into the generated frame, wherein the plurality of OFDM symbols are divided into a bootstrap, a preamble, and a payload, and the GI inserter inserts first GIs having a size corresponding to a fast Fourier transform (FFT) size of each of OFDM symbols configuring the payload into front ends of each of the OFDM symbols, inserts second GIs having a size corresponding to a quotient obtained by dividing an extra region of the payload calculated based on the FFT size of the OFDM symbols configuring the payload, the number of OFDM symbols, and the size of the first GIs by the number of OFDM symbols into front ends of each of the first GIs, and inserts a cyclic postfix (CP) having a size corresponding to the remainder remaining after dividing the extra region of the payload by the number of OFDM symbols into a rear end of a final OFDM symbol configuring the payload.
Abstract:
A method for reducing Peak-to-Average Power Ratio (PAPR) in a Single Carrier Frequency Division Multiple Access (SC-FDMA) based radio communication system is provided. The method includes arranging symbols mapped to predetermined sub-carrier allocation types such that phases of the symbols do not overlap, and transmitting the arranged symbols.
Abstract:
A transmitting apparatus is provided. The transmitting apparatus includes: a frame generator configured to generate a frame including a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and a guard interval (GI) inserter configured to insert GIs into the generated frame, wherein the plurality of OFDM symbols are divided into a bootstrap, a preamble, and a payload, and the GI inserter inserts first GIs having a size corresponding to a fast Fourier transform (FFT) size of each of OFDM symbols configuring the payload into front ends of each of the OFDM symbols, inserts second GIs having a size corresponding to a quotient obtained by dividing an extra region of the payload calculated based on the FFT size of the OFDM symbols configuring the payload, the number of OFDM symbols, and the size of the first GIs by the number of OFDM symbols into front ends of each of the first GIs, and inserts a cyclic postfix (CP) having a size corresponding to the remainder remaining after dividing the extra region of the payload by the number of OFDM symbols into a rear end of a final OFDM symbol configuring the payload.
Abstract:
A transmitting apparatus is provided. The transmitting apparatus includes: a frame generator configured to generate a frame including a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and a guard interval (GI) inserter configured to insert GIs into the generated frame, wherein the plurality of OFDM symbols are divided into a bootstrap, a preamble, and a payload, and the GI inserter inserts first GIs having a size corresponding to a fast Fourier transform (FFT) size of each of OFDM symbols configuring the payload into front ends of each of the OFDM symbols, inserts second GIs having a size corresponding to a quotient obtained by dividing an extra region of the payload calculated based on the FFT size of the OFDM symbols configuring the payload, the number of OFDM symbols, and the size of the first GIs by the number of OFDM symbols into front ends of each of the first GIs, and inserts a cyclic postfix (CP) having a size corresponding to the remainder remaining after dividing the extra region of the payload by the number of OFDM symbols into a rear end of a final OFDM symbol configuring the payload.
Abstract:
A relay apparatus relays a signal received from a transmitting apparatus to a receiving apparatus, and includes a receiver configured to receive a signal from the transmitting apparatus, and a transmitter configured to repeatedly transmit a predetermined symbol interval of the received signal to the receiving apparatus.
Abstract:
A transmitting apparatus is provided. The transmitting apparatus includes: a frame generator configured to generate a frame including a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and a guard interval (GI) inserter configured to insert GIs into the generated frame, wherein the plurality of OFDM symbols are divided into a bootstrap, a preamble, and a payload, and the GI inserter inserts first GIs having a size corresponding to a fast Fourier transform (FFT) size of each of OFDM symbols configuring the payload into front ends of each of the OFDM symbols, inserts second GIs having a size corresponding to a quotient obtained by dividing an extra region of the payload calculated based on the FFT size of the OFDM symbols configuring the payload, the number of OFDM symbols, and the size of the first GIs by the number of OFDM symbols into front ends of each of the first GIs, and inserts a cyclic postfix (CP) having a size corresponding to the remainder remaining after dividing the extra region of the payload by the number of OFDM symbols into a rear end of a final OFDM symbol configuring the payload.
Abstract:
A transmitting apparatus is provided. The transmitting apparatus includes: a frame generator configured to generate a frame including a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and a guard interval (GI) inserter configured to insert GIs into the generated frame, wherein the plurality of OFDM symbols are divided into a bootstrap, a preamble, and a payload, and the GI inserter inserts first GIs having a size corresponding to a fast Fourier transform (FFT) size of each of OFDM symbols configuring the payload into front ends of each of the OFDM symbols, inserts second GIs having a size corresponding to a quotient obtained by dividing an extra region of the payload calculated based on the FFT size of the OFDM symbols configuring the payload, the number of OFDM symbols, and the size of the first GIs by the number of OFDM symbols into front ends of each of the first GIs, and inserts a cyclic postfix (CP) having a size corresponding to the remainder remaining after dividing the extra region of the payload by the number of OFDM symbols into a rear end of a final OFDM symbol configuring the payload.
Abstract:
A transmitting apparatus, a receiving apparatus and controlling these apparatuses with regard to antenna identification information are provided. The transmitting apparatus includes: a frame generator configured to generate a plurality of frames which include a preamble symbol and a data symbol; and a transmitter configured to group a plurality of sub-carriers for the plurality of frames into a plurality of groups, insert in the plurality of frames antenna identification information controlling a sum of phase differences between the plurality of groups, calculated based on identification information about at least one external antenna of the transmitting apparatus, to be lowered than a predetermined threshold value, and transmit the plurality of frames in which the antenna identification information is inserted.