Abstract:
An image photographing device and a control method thereof are provided. The image photographing device includes: a camera configured to photograph an image; an inputter configured to receive an input of a user command; a haptic unit disposed on an area of a body of the image photographing device at which a user grips the image photographing device and configured to provide a vibration feedback to the user; and a controller configured to control the haptic unit to provide a vibration feedback that corresponds to a user command in response to the user command being received via the inputter.
Abstract:
A camera and a lens module are provided. The camera includes a lens module and an image sensor. The lens module includes a lens unit including a protrusion, the lens unit being configured to move in a direction of an optical axis of the camera. The lens module further includes a movement guide including an inclination part, the protrusion being configured to slide along the inclination part while the lens unit moves in the direction of the optical axis. The lens module further includes a driver configured to drive the lens unit in the direction of the optical axis, and a pre-loader configured to provide a pre-load between the lens unit and the movement guide in the direction of the optical axis.
Abstract:
Provided is an imaging device module including: an imaging device including a first optical element on which a first light is incident and an image sensor; and a first optical image stabilization (OIS) operator configured to move back and forth along an optical axis direction of a second light reflected from the first optical system, wherein a third light having an optical path adjusted by the first OIS operator may be incident on the image sensor.
Abstract:
A photographing apparatus module is disclosed, and includes: an image sensor module; a lens module shifted with respect to the image sensor module in a first direction or a second direction that is perpendicular to an optical axis direction of incident light; and an image stabilization module arranged in the image sensor module and applying a driving force to the lens module.
Abstract:
An imaging device is provided including detection circuitry configured to detect a grip force applied to an imaging device; and a controller configured to set a reference force based on at least one of weight information of a lens mounted on the imaging device and base grip force information and to operate in an imaging ready mode when the detected grip force is equal to or greater than the reference force.
Abstract:
An example photographing apparatus module includes: a photographing apparatus configured to rotate on a first axis and a second axis perpendicular to the first axis; and an actuator module configured to rotate the photographing apparatus on the first axis or the second axis. The actuator module includes: one or more first actuator devices configured to apply a contact force along an optical axis direction of the photographing apparatus that is perpendicular to the first axis and the second axis; and one or more second actuator devices configured to apply a driving force to the photographing apparatus along the first axis direction or the second axis direction.
Abstract:
An example photographing apparatus module includes an image sensor module; a lens module shifted with respect to the image sensor module in a first direction or a second direction that is perpendicular to an optical axis direction of incident light; and an image stabilization module arranged in the image sensor module and applying a driving force to the lens module.
Abstract:
Disclosed are a bifocal lens having two focal distances to enable near image capturing and far image capturing and capable of being manufactured to have a thin profile, and an imaging device including same. A bifocal lens according to disclosed embodiments may include: a refractive optical system having at least one refractive lens element and having a first focal distance; and a reflective optical system having multiple reflective surfaces and having a second focal distance that is different from the first focal distance. Because the refractive optical system and the reflective optical system have mutually different focal distances, the bifocal lens according to an embodiment may be capable of both near image capturing and far image capturing.