Abstract:
An optical adjusting apparatus having an optical adjusting lens to perform image stabilization and auto focusing includes a base supporting a lens barrel on which the optical adjusting lens is mounted, a first driver to move the lens barrel in a first direction, a plurality of first ball bearings disposed between the base and the first driver, a second driver to move the lens barrel in a second direction that is perpendicular to the first direction, and a plurality of second ball bearings disposed between the first driver and the second driver.
Abstract:
A small camera apparatus includes a base, a lens barrel, a lens driving assembly, and a first flexible printed circuit board. The lens barrel is disposed to be spaced apart from the image sensor in an optical axis direction and has at least one lens. The lens driving assembly has a supporting frame, a first moving frame supported on the supporting frame to be movable in the optical axis direction, and a second moving frame loaded with the lens barrel and supported on the first moving frame to be movable in directions perpendicular to the optical axis direction. The first flexible printed circuit board (FPCB) provides an electrical signal, for driving the second moving frame, to the first moving frame. At least a portion of the first FPCB is bent and is disposed between the base and the first moving frame. At least a portion of the bent portion is bonded to reduce a bending tension that occurs in a direction opposite to a bending direction when the first FPCB is bent.
Abstract:
A hollow brushless motor is provided. The hollow brushless motor includes a hollow shape rotor to be rotatable about a rotation axis, a hollow shape stator spaced apart from the rotor by a distance in a direction of the rotation axis and arranged to face the rotor, and a first support to maintain a gap between the rotor and the stator, and arranged between the rotor and the stator to support the rotor and the stator such that the rotor rotates with respect to the stator.
Abstract:
An image stabilizing apparatus includes: a base; a first frame movably coupled to the base in a first direction; a first vibration axis that movably support the first frame; a first vibration unit that vibrates the first vibration axis; a first sensing unit that senses a position variation of the first frame; a second frame movably coupled to the first frame in a second direction that crosses the first direction; a lens coupled to the second frame; a second vibration axis that is disposed on the first frame to movably support the second frame; a second vibration unit that vibrates the second vibration axis; a second sensing unit that senses a position variation of the second frame; and a first elastic plate including a connecting portion that is connected to the first frame and a pressing portion that is bent from the connecting portion and presses the first vibration axis.
Abstract:
An optical adjusting apparatus having an optical adjusting lens to perform image stabilization and auto focusing includes a base supporting a lens barrel on which the optical adjusting lens is mounted, a first driver to move the lens barrel in a first direction, a plurality of first ball bearings disposed between the base and the first driver, a second driver to move the lens barrel in a second direction that is perpendicular to the first direction, and a plurality of second ball bearings disposed between the first driver and the second driver.
Abstract:
An image stabilizing apparatus includes: a base; a first frame movably coupled to the base in a first direction; a first vibration axis that movably support the first frame; a first vibration unit that vibrates the first vibration axis; a first sensing unit that senses a position variation of the first frame; a second frame movably coupled to the first frame in a second direction that crosses the first direction; a lens coupled to the second frame; a second vibration axis that is disposed on the first frame to movably support the second frame; a second vibration unit that vibrates the second vibration axis; a second sensing unit that senses a position variation of the second frame; and a first elastic plate including a connecting portion that is connected to the first frame and a pressing portion that is bent from the connecting portion and presses the first vibration axis.
Abstract:
The present disclosure relates to an optical adjusting apparatus having an optical adjusting lens for image stabilization and auto focusing, which includes a lens holder that supports the optical adjusting lens; at least one image stabilization VCM actuator unit that moves the lens holder perpendicular to an optical axis of the optical adjusting lens, the image stabilization VCM actuator unit including a magnet with a neutral zone parallel to the optical axis; and an auto focusing VCM actuator unit that moves the lens holder in an optical axis direction, the auto focusing VCM actuator unit including a magnet with a neutral zone orthogonal to the optical axis.
Abstract:
The present disclosure relates to an optical adjusting apparatus having an optical adjusting lens for image stabilization and auto focusing, which includes a lens holder that supports the optical adjusting lens; at least one image stabilization VCM actuator unit that moves the lens holder perpendicular to an optical axis of the optical adjusting lens, the image stabilization VCM actuator unit including a magnet with a neutral zone parallel to the optical axis; and an auto focusing VCM actuator unit that moves the lens holder in an optical axis direction, the auto focusing VCM actuator unit including a magnet with a neutral zone orthogonal to the optical axis.
Abstract:
A small camera apparatus includes a base, a lens barrel, a lens driving assembly, and a first flexible printed circuit board. The lens barrel is disposed to be spaced apart from the image sensor in an optical axis direction and has at least one lens. The lens driving assembly has a supporting frame, a first moving frame supported on the supporting frame to be movable in the optical axis direction, and a second moving frame loaded with the lens barrel and supported on the first moving frame to be movable in directions perpendicular to to the optical axis direction. The first flexible printed circuit board (FPCB) provides an electrical signal, for driving the second moving frame, to the first moving frame. At least a portion of the first FPCB is bent and is disposed between the base and the first moving frame. At least a portion of the bent portion is bonded to reduce a bending tension that occurs in a direction opposite to a bending direction when the first FPCB is bent.