Abstract:
Provided is a magnetic resonance imaging (MRI) apparatus including an acquisition unit configured to acquire an undersampled spectrum in a k-space and a reconstruction unit configured to generate a target image based on the undersampled spectrum, wherein the reconstruction unit includes: a first sub-reconstruction unit configured to perform initial reconstruction on data corresponding to unsampled positions in the k-space by using a Split Bregman algorithm or approximate sparse coding; a second sub-reconstruction unit configured to decompose the initially reconstructed spectrum in the k-space into multiple frequency bands to thereby generate a plurality of individual spectra and perform dictionary learning reconstruction on images respectively corresponding to the decomposed multiple frequency bands by alternating sparse approximation and reconstructing of measured frequencies; and an image generator configured to generate a target image by merging together the reconstructed images respectively corresponding to the multiple frequency bands.
Abstract:
An MRI system acquires a susceptibility-weighted image by acquiring a first RF echo signal in a first echo time for providing an image exclusive of susceptibility-weighting and acquiring a second RF echo signal in a second echo time longer than the first echo time for providing an image including susceptibility-weighting. A compensation gradient field is applied for compensating for field inhomogeneity and in response, a third RF echo signal is acquired in a third echo time longer than the second echo time. First, second and third images are generated in response to data derived from the first, second and third RF echo signals respectively and data of the first, second and third images is combined to provide image data representing an image compensating for magnetic resonance signal attenuation in the second image.
Abstract:
A magnetic resonance imaging apparatus having a display and a method for controlling the same are provided. A magnetic resonance imaging apparatus includes a magnet assembly; a transfer table configured to move into the magnet assembly or out of the magnet assembly; and a display configured to move into the transfer table or move out of the transfer table.
Abstract:
An MRI apparatus includes: a receive coil assembly including channels, and configured to receive an MR signal from an object; a data generator configured to generate undersampled image data on a k-space based on the MR signal; and a reconstructed image generator configured to generate a first reconstructed image from the undersampled image data using a parallel imaging method, and a second reconstructed image from the undersampled image data using compressed sensing. According to the MRI apparatus, since image reconstruction is performed using random undersampled image data, a parallel imaging method, and compressed sensing, it is possible to increase a speed of image acquisition and, at the same time, to improve the quality of images.