Abstract:
Embodiments of the present disclosure are directed towards systems and methods for automated stratigraphy interpretation from borehole images. Embodiments may include constructing, using at least one processor, a training set of synthetic images corresponding to a borehole, wherein the training set includes one or more of synthetic images, real images, and modified images. Embodiments may further include automatically classifying, using the at least one processor, the training set into one or more individual sedimentary geometries using one or machine learning techniques. Embodiments may also include automatically classifying, using the at least one processor, the training set into one or more priors for depositional environments.
Abstract:
A method can include receiving sensor data acquired using one or more downhole tool pressure gauges disposed in a borehole in a geologic formation responsive to a fluid operation, where the geologic formation includes a reservoir; and, for the fluid operation, using at least an infinite acting model, determining a distance of pressure influence in the geologic formation.
Abstract:
An apparatus is operated to obtain a model predicting data associated with a theoretical sampling operation to be performed by a downhole sampling tool, including predicted water-cut and pressure data relative to time elapsed during the theoretical sampling operation. The model predicts the water-cut and pressure data based on estimated relative permeability and capillary pressure related to different constituents of fluid theoretically obtained from a subterranean formation by the downhole sampling tool during the theoretical sampling operation. An actual sampling operation is performed with the downhole sampling tool to actually obtain fluid and data associated with the actually obtained fluid, including actual water-cut and drawdown pressure data. The apparatus is then operated to update the model utilizing the actual data water-cut and drawdown pressure data, thus obtaining actual relative permeability and capillary pressure data.
Abstract:
Methods and systems for generating and utilizing a proxy model that generates a pumping parameter as a function of contamination. The pumping parameter is descriptive of a pumpout time or volume of fluid to be obtained from a formation by a downhole sampling tool positioned in a wellbore extending into the formation. The contamination is a percentage of the fluid obtained by the downhole sampling tool that is not native to the formation. The proxy model is based on a true model that utilizes true model input parameters that include the pumping parameter, formation parameters descriptive of the formation, and a filtrate parameter descriptive of a drilling fluid utilized to form the wellbore. The output of the true model is the contamination as a function of the pumping parameter. The proxy model utilizes proxy model input parameters each related to one or more of the true model input parameters.
Abstract:
A method for geological formation analysis may include collecting time-lapsed well-based measurement data from a first borehole in a geological formation over a measurement time period, and collecting time-lapsed electromagnetic (EM) cross-well measurement data via a plurality of spaced-apart second boreholes in the geological formation over the measurement time period. The method may further include determining simulated changes to a hydrocarbon resource in the geological formation over the measurement time period based upon a geological model using a processor, and using the processor to determine if the simulated changes are within an error threshold of the time-lapsed well-based measurement data and the time-lapsed cross-well EM measurement data. If the simulated changes are not within the error threshold, then the geological model may be updated.
Abstract:
Embodiments presented provide for a method for using down hole fluid measurements for hydrocarbon recovery operation. In embodiments, the down hole fluid measurements are used to determine reservoir features to aid in calculations for the reservoir. Downhole fluid measurements may also be used to check the accuracy of a downhole geological architecture and fluid charge parameters, thereby providing a check on geological conditions.
Abstract:
Embodiments of the present disclosure are directed towards systems and methods for automated stratigraphy interpretation from borehole images. Embodiments may include constructing, using at least one processor, a training set of synthetic images corresponding to a borehole, wherein the training set includes one or more of synthetic images, real images, and modified images. Embodiments may further include automatically classifying, using the at least one processor, the training set into one or more individual sedimentary geometries using one or machine learning techniques. Embodiments may also include automatically classifying, using the at least one processor, the training set into one or more priors for depositional environments.
Abstract:
A method for geological formation analysis may include collecting time-lapsed well-based measurement data from a first borehole in a geological formation over a measurement time period, and collecting time-lapsed electromagnetic (EM) cross-well measurement data via a plurality of spaced-apart second boreholes in the geological formation over the measurement time period. The method may further include determining simulated changes to a hydrocarbon resource in the geological formation over the measurement time period based upon a geological model using a processor, and using the processor to determine if the simulated changes are within an error threshold of the time-lapsed well-based measurement data and the time-lapsed cross-well EM measurement data. If the simulated changes are not within the error threshold, then the geological model may be updated.
Abstract:
Methods and systems for generating and utilizing a proxy model that generates a pumping parameter as a function of contamination. The pumping parameter is descriptive of a pumpout time or volume of fluid to be obtained from a formation by a downhole sampling tool positioned in a wellbore extending into the formation. The contamination is a percentage of the fluid obtained by the downhole sampling tool that is not native to the formation. The proxy model is based on a true model that utilizes true model input parameters that include the pumping parameter, formation parameters descriptive of the formation, and a filtrate parameter descriptive of a drilling fluid utilized to form the wellbore. The output of the true model is the contamination as a function of the pumping parameter. The proxy model utilizes proxy model input parameters each related to one or more of the true model input parameters.
Abstract:
A downhole tool is conveyed within a borehole extending into a subterranean formation. A void is created in a sidewall of the borehole by extending a rotating member from the downhole tool into the sidewall. A portion of the sidewall surrounding the void is mechanically compressed, and the viscosity of hydrocarbons in the subterranean formation proximate the void is reduced by injecting a fluid from the downhole tool into the formation via the void. Fluid comprising the reduced viscosity hydrocarbons and the injected fluid may then be drawn from the subterranean formation into the downhole tool.