Abstract:
Methods and systems are provided for conducting formation analysis. Data from borehole logging tools is used to conduct a petrophysical analysis of the formation in order to determine (quantify) total porosity and formation matrix permittivity for an interval of the formation. Noninvaded zone water saturation and flushed zone water saturation for the interval of the formation is determined using a saturation model of the interval. The noninvaded zone water saturation is compared to the flushed zone water saturation, and the results of the comparison are used to determine that the interval of the formation contains movable hydrocarbon, immobile hydrocarbon or movable formation water.
Abstract:
A method for deriving VOI for a hydrocarbon-bearing reservoir fluid model based on DFA data (“true fluid model”) versus an “incorrect fluid model” includes calculating first, second and third objective functions that are based on NPV(s) of simulated production by a reservoir simulator with different configurations. For the first objective function, the simulator is configured with the incorrect fluid model and control variables that are optimized to derive a first group of control variable values. For the second objective function, the simulator is configured with the true fluid model and the first group of control variable values. For the third objective function, the simulator is configured with the true fluid model and control variables that are optimized to identify a second group of control variable values. The objective functions can be deterministic, or can include statistics that account for uncertainty. A visualization of such results with uncertainty is also described.
Abstract:
A method includes identifying linearly behaving data within obtained data associated with fluid obtained from a subterranean formation. Shrinkage factor is determined based on the linearly behaving data. A function relating GOR data of the obtained fluid with the determined shrinkage factor is determined. A first linear relationship between optical density (OD) data of the obtained fluid and the function is determined. A second linear relationship between density data of the obtained fluid and the function is determined. An oil-based mud (OBM) filtrate contamination property of OBM filtrate within the obtained fluid based on the first linear relationship is determined. A native formation property of native formation fluid within the obtained fluid based on the second linear relationship is determined. A volume fraction of OBM filtrate contamination within the obtained fluid based on the OBM filtrate contamination property and the native formation property is estimated.
Abstract:
A method includes receiving first fluid property data from a first location in a hydrocarbon reservoir and receiving second fluid property data from a second location in the hydrocarbon reservoir. The method includes performing a plurality of realizations of models of the hydrocarbon reservoir according to a respective plurality of one or more plausible dynamic processes to generate one or more respective modeled fluid properties. The method includes selecting the one or more plausible dynamic processes based at least in part on a relationship between the first fluid property data, the second fluid property data, and the modeled fluid properties obtained from the realizations to identify potential disequilibrium in the hydrocarbon reservoir.
Abstract:
A methodology performs downhole fluid analysis at multiple measurement stations within a wellbore traversing a reservoir to determine gradients of compositional components and other fluid properties. A model is used to predict concentrations of a plurality of high molecular weight solute part class-types at varying reservoir locations. Such predictions are compared against downhole measurements to identify the best matching solute part class-type. If the best-matching class type corresponds to at least one predetermined asphaltene component, phase stability of asphaltene in the reservoir fluid at a given depth is evaluated using equilibrium criteria involving an oil rich phase and an asphaltene rich phase of respective components of the reservoir fluid at the given depth. The result of the evaluation of asphaltene rich phase stability is used for reservoir analysis. The computational analysis that evaluates asphaltene rich phase stability can also be used in other reservoir understanding workflows and in reservoir simulation.
Abstract:
Fluid analysis measurements may be performed during withdrawal of a downhole tool to the surface. Fluid may be collected within a fluid analysis system of the downhole tool and the collected fluid may be exposed to the wellbore pressure during withdrawal of the downhole tool. Measurements for the collected fluid, such as optical density, the gas oil ratio, fluid density, fluid viscosity, fluorescence, temperature, and pressure, among other, may be recorded continuously or at intervals as the downhole tool is brought to the surface. The measurements may be employed to determine properties of the collected fluid, such as the saturation pressure and the asphaltene onset pressure.
Abstract:
A method for predicting asphaltene onset pressure in a reservoir is provided. In one embodiment, the method includes performing downhole fluid analysis of formation fluid via a downhole tool at a measurement station at a first depth in a wellbore and determining an asphaltene gradient for the formation fluid at the measurement station. Asphaltene onset pressure for a second depth in the wellbore may then be predicted based on the downhole fluid analysis and the determined asphaltene gradient. Additional methods, systems, and devices are also disclosed.
Abstract:
A method of evaluating a gradient of a composition of materials in a petroleum reservoir, comprising sampling fluids from a well in the petroleum reservoir in a logging operation, measuring an amount of contamination in the sampled fluids, measuring the composition of the sampling fluids using a downhole fluid analysis, measuring an asphaltene content of the sampling fluids at different depths; and fitting the asphaltene content of the sampling fluids at the different depths to a simplified equation of state during the logging operation to determine the gradient of the composition of the materials in the petroleum reservoir.
Abstract:
A methodology performs downhole fluid analysis at multiple measurement stations within a wellbore traversing a reservoir to determine gradients of compositional components and other fluid properties. A model is used to predict concentrations of a plurality of high molecular weight solute part class-types at varying reservoir locations. Such predictions are compared against downhole measurements to identify the best matching solute part class-type. If the best-matching class type corresponds to at least one predetermined asphaltene component, phase stability of asphaltene in the reservoir fluid at a given depth is evaluated using equilibrium criteria involving an oil rich phase and an asphaltene rich phase of respective components of the reservoir fluid at the given depth. The result of the evaluation of asphaltene rich phase stability is used for reservoir analysis. The computational analysis that evaluates asphaltene rich phase stability can also be used in other reservoir understanding workflows and in reservoir simulation.
Abstract:
Systems and methods presented herein are configured to monitor gas storage in a well and, more specifically, to invert optical measurements to predict the fractional molar composition of an unknown composition of a gas mixture comprised of hydrogen, carbon dioxide, other gases, or combinations thereof, in any underground reservoir or salt dome where hydrogen, carbon dioxide, and/or the other gases are stored or exist.