Abstract:
A sonic tool is activated in a well having multiple casings and annuli surrounding the casing. Detected data is preprocessed using slowness time coherence (STC) processing to obtain STC data. The STC data is provided to a machine learning module which has been trained on labeled STC data. The machine learning module provides an answer product regarding the states of the borehole annuli which may be used to make decision regarding remedial action with respect to the borehole casings. The machine learning module may implement a convolutional neural network (CNN), a support vector machine (SVM), or an auto-encoder.
Abstract:
Slowness dispersion characteristics of multiple possibly interfering signals in broadband acoustic waves as received by an array of two or more sensors are extracted without using a physical model. The problem of dispersion extraction is mapped to the problem of reconstructing signals having a sparse representation in an appropriately chosen over-complete dictionary of basis elements. A sparsity penalized signal reconstruction algorithm is described where the sparsity constraints are implemented by imposing a l1 norm type penalty. The candidate modes that are extracted are consolidated by means of a clustering algorithm to extract phase and group slowness estimates at a number of frequencies which are then used to reconstruct the desired dispersion curves. These estimates can be further refined by building time domain propagators when signals are known to be time compact, such as by using the continuous wavelet transform.
Abstract:
A sonic tool is activated in a well having multiple casings and annuli surrounding the casing. Detected data is preprocessed using slowness time coherence (STC) processing to obtain STC data. The STC data is provided to a machine learning module which has been trained on labeled STC data. The machine learning module provides an answer product regarding the states of the borehole annuli which may be used to make decision regarding remedial action with respect to the borehole casings. The machine learning module may implement a convolutional neural network (CNN), a support vector machine (SVM), or an auto-encoder.
Abstract:
A sonic tool is activated in a well having multiple casings and annuli surrounding the casing. Detected data is preprocessed using slowness time coherence (STC) processing to obtain STC data. The STC data is provided to a machine learning module which has been trained on labeled STC data. The machine learning module provides an answer product regarding the states of the borehole annuli which may be used to make decision regarding remedial action with respect to the borehole casings. The machine learning module may implement a convolutional neural network (CNN), a support vector machine (SVM), or an auto-encoder.
Abstract:
Methods and apparatus for waveform processing are disclosed. An example method includes determining shrinkage estimators in a Discrete Radon transform domain based on semblance of waveform data and de-noising the waveform data using a processor and the shrinkage estimators to enable the identification of weak signals in the waveform data.
Abstract:
Methods and apparatus for waveform processing are disclosed. An example method includes representing waveform data using space time propagators in the Discrete Radon Transform Domain. The method also includes identifying signals within the represented waveform data using a Sparisty Penalized Transform.
Abstract:
Methods and apparatus for waveform processing are disclosed. An example method includes determining shrinkage estimators in a Discrete Radon transform domain based on semblance of waveform data and de-noising the waveform data using a processor and the shrinkage estimators to enable the identification of weak signals in the waveform data.