Abstract:
An optical converter for producing colored or white light from blue excitation light is provided. The converter has good scattering properties to be able to produce nearly white light from the scattered blue light components and the scattered, converted yellow light components. The optical converter includes material including one or more of a YAG ceramic, a LuAG ceramic, and a magnesium-aluminum ceramic exhibiting strong scattering.
Abstract:
A converter arrangement for light sources with high luminance is provided that includes an axially pivotable carrying wheel and a converter fixed on one side of the carrying wheel. The converter includes fluorescent materials that convert impinging light into light having a different wave length and emits the light having the different wavelength. The ratio of the total area of the converter arrangement to the area enclosed by the outer boundary curve of the converter is at least 3, preferably at least 3.5, particularly preferably at least 4.5.
Abstract:
A method for producing a glass product having a low bubble content from a melt is provided, wherein the melt at least partly comes into contact with a noble metal-comprising component.
Abstract:
An optical converter for producing colored or white light from blue excitation light is provided. The converter has good scattering properties to be able to produce nearly white light from the scattered blue light components and the scattered, converted yellow light components. The optical converter includes material including one or more of a YAG ceramic, a LuAG ceramic, and a magnesium-aluminum ceramic exhibiting strong scattering.
Abstract:
A converter arrangement for light sources with high luminance is provided that includes an axially pivotable carrying wheel and a converter fixed on one side of the carrying wheel. The converter includes fluorescent materials that convert impinging light into light having a different wave length and emits the light having the different wavelength. The ratio of the total area of the converter arrangement to the area enclosed by the outer boundary curve of the converter is at least 3, preferably at least 3.5, particularly preferably at least 4.5.
Abstract:
A converter arrangement for light sources with high luminance is provided that includes an axially pivotable carrying wheel and a converter fixed on one side of the carrying wheel. The converter includes fluorescent materials that convert impinging light into light having a different wave length and emits the light having the different wavelength. The ratio of the total area of the converter arrangement to the area enclosed by the outer boundary curve of the converter is at least 3, preferably at least 3.5, particularly preferably at least 4.5.