Abstract:
The present invention presents a tunnel construction large-scale integrated geophysical advanced detection model test device. The model test device includes a tunnel surrounding rock, a main tunnel model, a model test case, a water-containing geological structure device, a numerical control automated construction device and a main control chamber. The model test device is a large-scale integrated geophysical advanced detection model test device meeting the detection using a seismic wave method, an electromagnetic method and a direct-current electric method. By using the geophysical advanced detection model test device, the geophysical response features of the water-containing geological structure device in front of a tunnel face may be studied, multiple geophysical advanced detection forward and inversion methods for the water-containing geological structure device are verified, and the relationship between some geophysical detection method results and water burst quantity is studied, for the advanced prediction and water burst quantity prediction in actual engineering.
Abstract:
The present invention presents a comprehensive advanced geological detection system carried on a tunnel boring machine. The comprehensive advanced geological detection system includes a multifunctional combination main frame, an induced polarization detection device, a seismic wave detection device, an integrated junction device, a borehole ground penetrating radar detection device and a comprehensive interpretation and decision system; the multifunctional combination main frame includes a time division multiplexing control module, an excitation source control module and a parallel data acquisition module; the excitation source control module outputs trigger signals to the three detection devices respectively, and the three detection devices respectively output measurement data and feedback signals to the time division multiplexing control module through the parallel data acquisition module; and the comprehensive interpretation and decision system supports geological interpretations and decisions through the inversion/migration imaging joint inversion of three detection methods.
Abstract:
Disclosed is an advanced detector system and method using a forward three-dimensional induced polarization method for a TBM (Tunnel Boring Machine) construction tunnel. A narrow detection space of a full-face excavated tunnel is fully used, a controller controls doors of a source and measuring electrode compartment and a shielding electrode compartment to open and controls a corresponding hydraulic delivery device to automatically and quickly arrange a source electrode system, a measuring electrode system and a shielding electrode system. Under the action of a shielding current system, tomography detection supply current is directed ahead of the working face. Three-dimensional geologic information can be obtained, and the relationship between an induced polarization half-decay time difference and a water quantity can be used to quantitatively forecast the water quantity of a water-bearing body, and meanwhile, the half-decay time difference parameter has a high capacity of distinguishing free water from bound water.
Abstract:
A shield-carried noncontact frequency-domain electrical real-time advanced detection system and method are provided. Noncontact electrodes are installed on a cutter head of a shield tunneling machine, current is emitted and received using capacitance coupling, the electrodes are connected to a host via a multi-way swivel joint, measured data is inversed and interpreted in real time, and the prediction result is transmitted to a control system of the shield tunneling machine so as to provide a technical support for safety construction of the shield tunneling machine; the noncontact electrodes are installed on the shield cutter head. Real-time advanced detection of geology in front of a tunnel face can be realized in the tunneling process, so that the requirement for quick tunneling construction is met, and the efficiency of advanced geological detection of the shield tunneling machine is improved; and an electrode system is only installed on the cutter head.
Abstract:
The present invention presents a comprehensive advanced geological detection system carried on a tunnel boring machine. The comprehensive advanced geological detection system includes a multifunctional combination main frame, an induced polarization detection device, a seismic wave detection device, an integrated junction device, a borehole ground penetrating radar detection device and a comprehensive interpretation and decision system; the multifunctional combination main frame includes a time division multiplexing control module, an excitation source control module and a parallel data acquisition module; the excitation source control module outputs trigger signals to the three detection devices respectively, and the three detection devices respectively output measurement data and feedback signals to the time division multiplexing control module through the parallel data acquisition module; and the comprehensive interpretation and decision system supports geological interpretations and decisions through the inversion/migration imaging joint inversion of three detection methods.
Abstract:
Disclosed is an advanced detector system and method using a forward three-dimensional induced polarization method for a TBM (Tunnel Boring Machine) construction tunnel. A narrow detection space of a full-face excavated tunnel is fully used, a controller controls doors of a source and measuring electrode compartment and a shielding electrode compartment to open and controls a corresponding hydraulic delivery device to automatically and quickly arrange a source electrode system, a measuring electrode system and a shielding electrode system. Under the action of a shielding current system, tomography detection supply current is directed ahead of the working face. Three-dimensional geologic information can be obtained, and the relationship between an induced polarization half-decay time difference and a water quantity can be used to quantitatively forecast the water quantity of a water-bearing body, and meanwhile, the half-decay time difference parameter has a high capacity of distinguishing free water from bound water.