Abstract:
A bicycle chain comprises a first inner link plate and a second inner link plate. The first inner link plate comprises a first inner-link end portion, a second inner-link end portion, and a first inner-link intermediate portion. The second inner link plate comprises a third inner-link end portion, a fourth inner-link end portion, and a second inner-link intermediate portion. A first inner-link end edge has a first chamfer extending about the first inner-link center axis such that a part of the first chamfer is disposed in a first circumferential area defined from a first inner-link longitudinal centerline to a first reference line when viewed in an axial direction of the first inner-link center axis. The first circumferential area is smaller than 14 degrees.
Abstract:
A bicycle sprocket assembly is basically provided that includes a sprocket support member, a first sprocket, a second sprocket that is a separate member from the first sprocket, and a third sprocket that is a separate member from the first and second sprockets. The sprocket support member is configured to support at least one of the first, second and third sprockets. The sprocket support member includes a plurality of sprocket support portions extending radially outwardly from a central cylindrical portion. A first reinforcement member is attached to at least one of the first and second sprockets, and extends between the first and second sprockets. A second reinforcement member is attached to at least one of the second and third sprockets, and extends between the second and third sprockets. Each of the first and second reinforcement members is disposed between an adjacent pair of the plurality of sprocket support portions.
Abstract:
An outer link plate for a bicycle chain includes a first outer-link end portion, a second outer-link end portion and an outer-link intermediate portion interconnecting the first outer-link end portion and the second outer-link end portion. The first outer-link end portion includes a first outer-link opening having a first outer-link center axis. The second outer-link end portion includes a second outer-link opening having a second outer-link center axis parallel to the first outer-link center axis. The outer link plate has an outer-link longitudinal centerline. The outer-link intermediate portion has an outer-link outer surface and an outer-link inner surface that is opposite to the outer-link outer surface in an axial direction parallel to the first outer-link center axis. The outer-link intermediate portion includes an axial protrusion protruding from the outer-link inner surface in the axial direction. The axial protrusion is offset from the outer-link longitudinal centerline.
Abstract:
A bicycle chain comprises a first outer link plate, a second outer link plate, and an axial protuberance protruding. The first outer link plate comprises a first end portion, a second end portion, and a first intermediate portion. The second outer link plate comprises a third end portion, a fourth end portion, and a second intermediate portion. The axial protuberance protrudes from a first inner surface of the first intermediate portion in an axial direction. The second intermediate portion of the second outer link plate is free from an axial protuberance protruding from a second inner surface of the second intermediate portion in an axial direction.
Abstract:
A bicycle sprocket comprises a sprocket body, a plurality of sprocket teeth, and at least one chain-curvature limiting protuberance. The sprocket body is configured to be rotatable about a rotational center axis. The plurality of sprocket teeth extend radially outward from an outer periphery of the sprocket body. The at least one chain-curvature limiting protuberance is configured to limit axial curvature of a bicycle chain engaging with an independent neighboring bicycle sprocket which is adjacent to the bicycle sprocket without another sprocket between the bicycle sprocket and the independent neighboring bicycle sprocket. The axial curvature is curvature of the bicycle chain relative to the bicycle sprocket when viewed from a radial direction perpendicular to the rotational center axis. The at least one chain-curvature limiting protuberance is disposed on at least one of an outward facing side and an inward facing side.
Abstract:
A bicycle chain comprises a first outer link plate, a first inner link plate, and a first link pin. The first outer link plate comprises a first end portion, a second end portion, and a first intermediate portion. The first end portion includes a first opening having a first center axis. A first outer-link distance is defined from the first center axis to a first end edge. The first inner link plate comprises a third end portion, a forth end portion, and a second intermediate portion. The third end portion includes a third opening having a third center axis. A first inner-link distance is defined from the third center axis to a third end edge. A second inner-link distance is defined from the third center axis to a third end edge. The first inner-link distance is larger than the second inner-link distance and the first outer-link distance.
Abstract:
A bicycle chain comprises a first inner link plate and a second inner link plate. The first inner link plate comprises a first inner-link end portion, a second inner-link end portion, and a first inner-link intermediate portion. The first inner-link end portion overlaps with a tooth of a sprocket when viewed in the axial direction to provide an overlapping area in a state where the bicycle chain is engaged with the sprocket. The overlapping area has a maximum circumferential length equal to or larger than 0.45 mm.
Abstract:
A bicycle sprocket comprises a sprocket body, a plurality of sprocket teeth, and at least one upshifting facilitation area. The plurality of sprocket teeth extends radially outwardly from the sprocket body with respect to the rotational center axis. The plurality of sprocket teeth includes at least one axially recessed upshifting initiation tooth. The at least one axially recessed upshifting initiation tooth includes a driving surface, a non-driving surface and a tooth tip portion. The non-driving surface includes a non-driving surface protrusion disposed radially inwardly from a non-driving surface side tooth tip end with respect to a rotational center axis. The non-driving surface protrusion has a protrusion tip disposed closer to the second axially-facing surface than the non-driving-surface-side tooth tip end in the axial direction so that a guiding slope extends from the protrusion tip toward the first axially-facing surface.
Abstract:
A bicycle chain comprises a first outer link plate and a second outer link plate. A first outer-link longitudinal axis extends through a first outer-link center axis and a second outer-link center axis to divide a first outer surface into a first side and a second side when viewed in an axial direction. A second outer-link longitudinal axis extends through a third outer-link center axis and a fourth outer-link center axis to divide a second outer surface into a third side and a fourth side when viewed in the axial direction. The fourth side includes a first circumferential area and a first chamfer free area. The first circumferential area has a first angle equal to or larger than 20 degrees. The first chamfer free area is adjacent to the first circumferential area. At least one second chamfer is provided outside the first chamfer free area.
Abstract:
A bicycle rear sprocket assembly comprises a sprocket support and a first sprocket. The sprocket support includes a hub engagement part configured to engage with a bicycle hub assembly. The sprocket support includes a plurality of sprocket attachment members extending radially outwardly from the hub engagement part with respect to a rotational center axis of the bicycle rear sprocket assembly. The first sprocket is attached to the plurality of sprocket attachment members. The first sprocket includes a first sprocket body and a plurality of first sprocket teeth which extends radially outwardly from the first sprocket body with respect to the rotational center axis and a total number of which is equal to or larger than thirty-four. The first sprocket has a plurality of shifting facilitation areas. A total number of the plurality of shifting facilitation areas is a divisor of a total number of the plurality of sprocket attachment members.