Apparatus for growing single crystalline ingot and method for growing same

    公开(公告)号:US10435809B2

    公开(公告)日:2019-10-08

    申请号:US15752719

    申请日:2016-06-07

    摘要: The present invention relates to an apparatus for growing a single crystal ingot capable of uniformly controlling an oxygen concentration in a longitudinal direction and a radial direction of a single crystal ingot by uniformly maintaining a convection pattern on a silicon melt interface, and a method for growing the same. In an apparatus for growing a single crystal ingot and a method for growing the same according to the present invention, a horizontal magnet is positioned to be movable up and down by a magnet moving unit around a crucible, so that a maximum gauss position (MGP) is positioned to be higher than the silicon melt interface and simultaneously, a rate of increase in the MGP is controlled to 3.5 mm/hr to 6.5 mm/hr, and thus it possible to secure simplicity and symmetry of convection on the silicon melt interface. Accordingly, in the present invention, it is possible to reduce an Oi deviation and a BMD deviation in a longitudinal direction and a radial direction of a single crystal ingot, thereby improving quality.

    Apparatus for growing single crystalline ingot and method for growing same

    公开(公告)号:US11214891B2

    公开(公告)日:2022-01-04

    申请号:US16554295

    申请日:2019-08-28

    摘要: The present invention relates to an apparatus for growing a single crystal ingot capable of uniformly controlling an oxygen concentration in a longitudinal direction and a radial direction of a single crystal ingot by uniformly maintaining a convection pattern on a silicon melt interface, and a method for growing the same. In an apparatus for growing a single crystal ingot and a method for growing the same according to the present invention, a horizontal magnet is positioned to be movable up and down by a magnet moving unit around a crucible, so that a maximum gauss position (MGP) is positioned to be higher than the silicon melt interface and simultaneously, a rate of increase in the MGP is controlled to 3.5 mm/hr to 6.5 mm/hr, and thus it possible to secure simplicity and symmetry of convection on the silicon melt interface. Accordingly, in the present invention, it is possible to reduce an Oi deviation and a BMD deviation in a longitudinal direction and a radial direction of a single crystal ingot, thereby improving quality.