Abstract:
A method for descaling a metal surface of a semifinished metal product, including the steps of: guiding the semifinished metal product in a transporting direction past nozzle head parts that rotate about rotation axes and are arranged alongside one another transversely to the transporting direction; and directing high-pressure fluid jets produced by nozzle elements arranged on the rotating nozzle head parts at the metal surface. The fluid jets also being blasted as far as the metal surface at a narrow point between two immediately adjacent nozzle head parts. The nozzle head parts rotate synchronously with one another at a preset angular position with respect to a rotation angle of a particular rotation axis of the nozzle head parts. The fluid jets produced by the nozzle elements are always blasted onto the metal surface past one another without coming into contact with one another.
Abstract:
A gear mechanism (6) for a rolling mill drive includes at least one involute cylindrical gear tooth system between at least two intermeshing gear wheels (3) with asymmetrical gearing. The normal pressure angle of the load-bearing tooth flanks (5) of the gear wheels (3) is greater than 20° and less than or equal to 30°, and the normal pressure angle of the trailing flanks (4) of the gear wheels is greater than or equal to 14° and less than 22°. A rolling mill drive has a gear mechanism (6) of this type, and the gear mechanism (6) is used as a rolling mill gear mechanism.