Abstract:
The invention relates to a method for to-be-cooled surface of cast material, rolled material (1) or a roll. Provided for the method is a nozzle, which comprises an inlet (3) and an outlet (5) lying opposite the surface to be cooled. Also provided is a preferably single-phase volume flow (V) of a cooling fluid, which is fed to the nozzle (2) via the inlet (3) and leaves the nozzle (2) through the outlet (5). According to the invention, the nozzle outlet (5) is mounted at a variable distance (d) from the surface to be cooled, wherein the volume flow (V) of the cooling fluid fed to the inlet (3) of the nozzle (2) is set in such a way that, in accordance with the Bernoulli principle, the nozzle (2) is sucked firmly against the surface (1) to be cooled. In addition, the invention is directed to a cooling device (10) for carrying out the method according to the invention and to a rolling device comprising this cooling device (10).
Abstract:
The invention relates to a method for to-be-cooled surface of cast material, rolled material (1) or a roll. Provided for the method is a nozzle, which comprises an inlet (3) and an outlet (5) lying opposite the surface to be cooled. Also provided is a preferably single-phase volume flow (V) of a cooling fluid, which is fed to the nozzle (2) via the inlet (3) and leaves the nozzle (2) through the outlet (5). According to the invention, the nozzle outlet (5) is mounted at a variable distance (d) from the surface to be cooled, wherein the volume flow (V) of the cooling fluid fed to the inlet (3) of the nozzle (2) is set in such a way that, in accordance with the Bernoulli principle, the nozzle (2) is sucked firmly against the surface (1) to be cooled. In addition, the invention is directed to a cooling device (10) for carrying out the method according to the invention and to a rolling device comprising this cooling device (10).
Abstract:
The application is directed to a device (1, 1′) for cooling a roll (2), in particular a working roll (2) for rolling rolling stock (3), wherein the device comprises a cooling shell (50, 60) which lies opposite at least one part region of the circumference of the roll surface for forming a cooling gap (5) between the part region of the roll surface and the cooling shell (50, 60), through which cooling gap (5) cooling fluid can flow, and a lever (40, 44) which can be pivoted about a suspension point (8, 48), can be pivoted in the direction of the roll surface and is connected rotatably to a first half (51, 61) of the cooling shell (50, 60) as viewed in the circumferential direction (U) of the roll (2), wherein the cooling gap (5) can optionally be reduced in size or enlarged by pivoting of the lever (40, 44). Furthermore, the device according to the invention comprises a variable-length linear guide (0, 99) which can be pivoted about a further suspension point (88, 48) and is connected rotatably to the second half (59, 69) of the cooling shell (50, 60) as viewed in the circumferential direction (U) of the roll (2).
Abstract:
The application is directed to a device (1, 1′) for cooling a roll (2), in particular a working roll (2) for rolling rolling stock (3), wherein the device comprises a cooling shell (50, 60) which lies opposite at least one part region of the circumference of the roll surface for forming a cooling gap (5) between the part region of the roll surface and the cooling shell (50, 60), through which cooling gap (5) cooling fluid can flow, and a lever (40, 44) which can be pivoted about a suspension point (8, 48), can be pivoted in the direction of the roll surface and is connected rotatably to a first half (51, 61) of the cooling shell (50, 60) as viewed in the circumferential direction (U) of the roll (2), wherein the cooling gap (5) can optionally be reduced in size or enlarged by pivoting of the lever (40, 44). Furthermore, the device according to the invention comprises a variable-length linear guide (0, 99) which can be pivoted about a further suspension point (88, 48) and is connected rotatably to the second half (59, 69) of the cooling shell (50, 60) as viewed in the circumferential direction (U) of the roll (2).