METHOD FOR REDUCING THE HYSTERESIS ERROR AND THE HIGH FREQUENCY NOISE ERROR OF CAPACITIVE TACTILE SENSORS

    公开(公告)号:US20220107237A1

    公开(公告)日:2022-04-07

    申请号:US17288534

    申请日:2020-07-01

    Abstract: A method for reducing hysteresis error and high frequency noise error of capacitive tactile sensors includes the following steps: step 1: calibration, specifically including positive stroke calibration to form n positive stroke curves and negative stroke calibration to form n negative stroke curves; step 2: averaging, specifically including positive stroke averaging to form an average positive stroke curve, negative stroke averaging to form an average negative stroke curve, and comprehensive averaging to form a comprehensive stroke curve; step 3: fitting modeling, to obtain a positive stroke fitting function, a negative stroke fitting function, and a comprehensive fitting function; step 4: measurement; step 5: noise filtering; step 6: stroke direction discrimination; and step 7: resolving, to obtain the force at the current time by using a corresponding fitting function based on the stroke direction discrimination result.

    MINIATURE COMBINED MULTI-AXIS FORCE SENSOR STRUCTURE

    公开(公告)号:US20240094072A1

    公开(公告)日:2024-03-21

    申请号:US18025186

    申请日:2022-05-12

    CPC classification number: G01L1/18 G01L5/1627

    Abstract: A miniature combined multi-axis force sensor structure includes a sensor body, a first shell and a second shell, two horizontal main beams and two vertical main beams are arranged on the periphery of an inner round platform in a cross shape, tail ends of the horizontal main beams and the vertical main beams are each connected to a vertical floating beam, and the horizontal floating beams consist of two thin-walled cambered beams; two ends of the horizontal floating beam are each connected to an outer round platform by means of an annular platform; the sensor body is arranged between the first shell and the second shell; strain gauges are stuck on the horizontal main beams and the vertical main beams to form two Wheatstone bridges; and when force/torque acts on the cross beam, the sensor deforms, and the resistance value of strain gauge at corresponding position changes.

    SIX-DIMENSIONAL FORCE SENSOR WITH HIGH SENSITIVITY AND LOW INTER-DIMENSIONAL COUPLING

    公开(公告)号:US20210293642A1

    公开(公告)日:2021-09-23

    申请号:US16973690

    申请日:2020-04-22

    Abstract: The present invention discloses a six-dimensional force sensor with high sensitivity and low inter-dimensional coupling, including a clockwise or counterclockwise swastika-shaped beam, vertical beams, a rectangular outer frame, and strain gauges; the clockwise or counterclockwise swastika-shaped beam includes a cross-shaped transverse beam and four rectangular transverse beams; a center of the cross-shaped transverse beam is provided with several force application holes used for applying forces and moments; four tail ends of the cross-shaped transverse beam are each connected to one of the rectangular transverse beams to form a clockwise or counterclockwise swastika-shaped structure; a top end of a vertical beam is connected to a tail end of a corresponding rectangular transverse beam, and bottom ends of the vertical beams are connected to the rectangular outer frame; and there are a plurality of strain gauges to form six groups of Wheatstone bridges that are respectively used for measuring an X-direction force, a Y-direction force, a Z-direction force, an X-direction moment, a Y-direction moment, and a Z-direction moment. Strain gauges for measuring the forces are all pasted on the cross-shaped transverse beam, strain gauges for measuring the X-direction moment and the Y-direction moment are all pasted on the four rectangular transverse beams, and strain gauges for measuring the Z-direction moment are all pasted on the four vertical beams. According to the present invention, the structure is simple, and inter-dimensional coupling is low while high sensitivity is ensured.

Patent Agency Ranking