Preserving privacy of one-dimensional data streams by perturbing data with noise and using dynamic autocorrelation
    1.
    发明授权
    Preserving privacy of one-dimensional data streams by perturbing data with noise and using dynamic autocorrelation 失效
    通过噪声干扰数据并使用动态自相关来保护一维数据流的隐私

    公开(公告)号:US07840516B2

    公开(公告)日:2010-11-23

    申请号:US11678808

    申请日:2007-02-26

    IPC分类号: G06F17/00

    CPC分类号: G06F21/755

    摘要: A method, information processing system, and computer readable medium are provided for preserving privacy of one-dimensional nonstationary data streams. The method includes receiving a one-dimensional nonstationary data stream. A set of first-moment statistical values are calculated, for a given instant of sub-space of time, for the data. The first moment statistical values include a principal component for the sub-space of time. The data is perturbed with noise along the principal component in proportion to the first-moment of statistical values so that at least part of a set of second-moment statistical values for the data is perturbed by the noise only within a predetermined variance.

    摘要翻译: 提供了一种方法,信息处理系统和计算机可读介质,用于保持一维非平稳数据流的隐私。 该方法包括接收一维非平稳数据流。 对于数据的子时间空间的给定时刻,计算一组一阶统计值。 第一时刻统计值包括时间子空间的主成分。 数据按照与主要分量成比例的噪声与第一时刻的统计值相互扰动,使得数据的至少一部分二阶统计值仅在预定方差内被噪声扰动。

    PRESERVING PRIVACY OF DATA STREAMS USING DYNAMIC CORRELATIONS
    2.
    发明申请
    PRESERVING PRIVACY OF DATA STREAMS USING DYNAMIC CORRELATIONS 失效
    使用动态关联保护数据流的隐私

    公开(公告)号:US20080209568A1

    公开(公告)日:2008-08-28

    申请号:US11678786

    申请日:2007-02-26

    IPC分类号: G06F21/06

    摘要: Disclosed is a method, information processing system, and computer readable medium for preserving privacy of nonstationary data streams. The method includes receiving at least one nonstationary data stream with time dependent data. Calculating, for a given instant of sub-space of time, A set of first-moment statistical values is calculated, for a given instant of sub-space of time, for the data. The first moment statistical values include a principal component for the sub-space of time. The data is perturbed with noise along the principal component in proportion to the first-moment of statistical values so that at least part of a set of second-moment statistical values for the data is perturbed by the noise only within a predetermined variance.

    摘要翻译: 公开了一种用于保持非平稳数据流的隐私的方法,信息处理系统和计算机可读介质。 该方法包括接收具有时间相关数据的至少一个非平稳数据流。 对于给定时间子空间的计算,对于数据的子时间空间的给定时刻,计算一组一阶统计值。 第一时刻统计值包括时间子空间的主成分。 数据按照与主要分量成比例的噪声与第一时刻的统计值相互扰动,使得数据的至少一部分二阶统计值仅在预定方差内被噪声扰动。

    Identifying optimal multi-scale patterns in time-series streams
    3.
    发明授权
    Identifying optimal multi-scale patterns in time-series streams 失效
    确定时间序列流中的最优多尺度模式

    公开(公告)号:US07945570B2

    公开(公告)日:2011-05-17

    申请号:US12551033

    申请日:2009-08-31

    IPC分类号: G06F17/30

    CPC分类号: G06K9/00496

    摘要: A computer-implemented method, system, and a computer readable article of manufacture identify local patterns in at least one time series data stream. A data stream is received that comprises at least one set of time series data. The at least one set of time series data is formed into a set of multiple ordered levels of time series data. Multiple ordered levels of hierarchical approximation functions are generated directly from the multiple ordered levels of time series data. A set of approximating functions are created for each level. A current window with a current window length is selected from a set of varying window lengths. The set of approximating functions created at one level in the multiple ordered levels is passed to a subsequent level as a set of time series data. The multiple ordered levels of hierarchical approximation functions are stored into memory after being generated.

    摘要翻译: 计算机实现的方法,系统和计算机可读制造商标识至少一个时间序列数据流中的局部模式。 接收包括至少一组时间序列数据的数据流。 至少一组时间序列数据被形成为一组时间序列数据的多个有序级别。 分层近似函数的多个有序级别直接从多个有序级别的时间序列数据生成。 为每个级别创建一组近似函数。 从一组变化的窗口长度中选择具有当前窗口长度的当前窗口。 在多个有序等级中在一个级别创建的一组近似函数作为一组时间序列数据传递到后续级别。 分层近似函数的多个有序等级在生成后被存储到存储器中。

    IDENTIFYING OPTIMAL MULTI-SCALE PATTERNS IN TIME-SERIES STREAMS
    4.
    发明申请
    IDENTIFYING OPTIMAL MULTI-SCALE PATTERNS IN TIME-SERIES STREAMS 失效
    识别时间序列中的最佳多尺度模式

    公开(公告)号:US20100063974A1

    公开(公告)日:2010-03-11

    申请号:US12551033

    申请日:2009-08-31

    IPC分类号: G06F17/30

    CPC分类号: G06K9/00496

    摘要: A computer-implemented method, system, and a computer readable article of manufacture identify local patterns in at least one time series data stream. A data stream is received that comprises at least one set of time series data. The at least one set of time series data is formed into a set of multiple ordered levels of time series data. Multiple ordered levels of hierarchical approximation functions are generated directly from the multiple ordered levels of time series data. A set of approximating functions are created for each level. A current window with a current window length is selected from a set of varying window lengths. The set of approximating functions created at one level in the multiple ordered levels is passed to a subsequent level as a set of time series data. The multiple ordered levels of hierarchical approximation functions are stored into memory after being generated.

    摘要翻译: 计算机实现的方法,系统和计算机可读制造商标识至少一个时间序列数据流中的局部模式。 接收包括至少一组时间序列数据的数据流。 至少一组时间序列数据被形成为一组时间序列数据的多个有序级别。 分层近似函数的多个有序级别直接从多个有序级别的时间序列数据生成。 为每个级别创建一组近似函数。 从一组变化的窗口长度中选择具有当前窗口长度的当前窗口。 在多个有序等级中在一个级别创建的一组近似函数作为一组时间序列数据传递到后续级别。 分层近似函数的多个有序等级在生成后被存储到存储器中。

    Systems and methods for simultaneous summarization of data cube streams
    5.
    发明授权
    Systems and methods for simultaneous summarization of data cube streams 失效
    同时汇总数据立方体流的系统和方法

    公开(公告)号:US07505876B2

    公开(公告)日:2009-03-17

    申请号:US11620679

    申请日:2007-01-07

    IPC分类号: G06F15/00 G06F17/30

    摘要: In an exemplary embodiment, some of the main aspects of the present invention are the following: (i) Data model: We introduce tensor streams to deal with large collections of multi-aspect streams; and (ii) Algorithmic framework: We propose window-based tensor analysis (WTA) to effectively extract core patterns from tensor streams. The tensor representation is related to data cube in On-Line Analytical Processing (OLAP). However, our present invention focuses on constructing simple summaries for each window, rather than merely organizing the data to produce simple aggregates along each aspect or combination of aspects.

    摘要翻译: 在一个示例性实施例中,本发明的一些主要方面如下:(i)数据模型:我们引入张量流以处理多方面流的大集合; 和(ii)算法框架:我们提出基于窗口的张量分析(WTA)来有效地从张量流中提取核心模式。 张量表示与在线分析处理(OLAP)中的数据立方体相关。 然而,我们的本发明专注于为每个窗口构造简单的摘要,而不仅仅是组织数据以沿着每个方面或方面的组合来产生简单的聚合。

    SYSTEMS AND METHODS FOR SIMULTANEOUS SUMMARIZATION OF DATA CUBE STREAMS
    6.
    发明申请
    SYSTEMS AND METHODS FOR SIMULTANEOUS SUMMARIZATION OF DATA CUBE STREAMS 失效
    数据库流程同步总结的系统和方法

    公开(公告)号:US20080168375A1

    公开(公告)日:2008-07-10

    申请号:US11620679

    申请日:2007-01-07

    IPC分类号: G06F3/048

    摘要: In an exemplary embodiment, some of the main aspects of the present invention are the following: (i) Data model: We introduce tensor streams to deal with large collections of multi-aspect streams; and (ii) Algorithmic framework: We propose window-based tensor analysis (WTA) to effectively extract core patterns from tensor streams. The tensor representation is related to data cube in On-Line Analytical Processing (OLAP). However, our present invention focuses on constructing simple summaries for each window, rather than merely organizing the data to produce simple aggregates along each aspect or combination of aspects.

    摘要翻译: 在一个示例性实施例中,本发明的一些主要方面如下:(i)数据模型:我们引入张量流以处理多方面流的大集合; 和(ii)算法框架:我们提出基于窗口的张量分析(WTA)来有效地从张量流中提取核心模式。 张量表示与在线分析处理(OLAP)中的数据立方体相关。 然而,我们的本发明专注于为每个窗口构造简单的摘要,而不仅仅是组织数据以沿着每个方面或方面的组合来产生简单的聚合。

    Identifying optimal multi-scale patterns in time-series streams
    7.
    发明申请
    Identifying optimal multi-scale patterns in time-series streams 审中-公开
    确定时间序列流中的最优多尺度模式

    公开(公告)号:US20070294247A1

    公开(公告)日:2007-12-20

    申请号:US11471002

    申请日:2006-06-20

    IPC分类号: G06F17/30

    CPC分类号: G06K9/00496

    摘要: A method, system, and computer readable medium for identifying local patterns in at least one time series data stream are disclosed. The method comprises generating multiple ordered levels of hierarchal approximation functions. The multiple ordered levels are generated directly from at least one given time series data stream including at least one set of time series data. The hierarchical approximation functions for each level of the multiple levels is based upon creating a set of approximating functions. The hierarchical approximation functions are also based upon selecting a current window with a current window length from a set of varying window lengths. The current window is selected for a current level of the multiple levels.

    摘要翻译: 公开了一种用于识别至少一个时间序列数据流中的局部模式的方法,系统和计算机可读介质。 该方法包括生成层次近似函数的多个有序级别。 多个有序级别直接从包括至少一组时间序列数据的至少一个给定时间序列数据流生成。 多层次的每个级别的层次近似函数基于创建一组近似函数。 层次近似函数还基于从一组变化的窗口长度中选择具有当前窗口长度的当前窗口。 为当前级别选择当前窗口。

    Preserving privacy of one-dimensional data streams using dynamic correlations
    8.
    发明授权
    Preserving privacy of one-dimensional data streams using dynamic correlations 失效
    使用动态相关性保护一维数据流的隐私

    公开(公告)号:US07853545B2

    公开(公告)日:2010-12-14

    申请号:US11678786

    申请日:2007-02-26

    IPC分类号: G06F17/00

    摘要: Disclosed is a method, information processing system, and computer readable medium for preserving privacy of nonstationary data streams. The method includes receiving at least one nonstationary data stream with time dependent data. Calculating, for a given instant of sub-space of time, A set of first-moment statistical values is calculated, for a given instant of sub-space of time, for the data. The first moment statistical values include a principal component for the sub-space of time. The data is perturbed with noise along the principal component in proportion to the first-moment of statistical values so that at least part of a set of second-moment statistical values for the data is perturbed by the noise only within a predetermined variance.

    摘要翻译: 公开了一种用于保持非平稳数据流的隐私的方法,信息处理系统和计算机可读介质。 该方法包括接收具有时间相关数据的至少一个非平稳数据流。 对于给定时间子空间的计算,对于数据的子时间空间的给定时刻,计算一组一阶统计值。 第一时刻统计值包括时间子空间的主成分。 数据按照与主要分量成比例的噪声与第一时刻的统计值相互扰动,使得数据的至少一部分二阶统计值仅在预定方差内被噪声扰动。

    PRESERVING PRIVACY OF ONE-DIMENSIONAL DATA STREAMS USING DYNAMIC AUTOCORRELATION
    9.
    发明申请
    PRESERVING PRIVACY OF ONE-DIMENSIONAL DATA STREAMS USING DYNAMIC AUTOCORRELATION 失效
    使用动态自动保存保护一维数据流的隐私

    公开(公告)号:US20080205641A1

    公开(公告)日:2008-08-28

    申请号:US11678808

    申请日:2007-02-26

    IPC分类号: H04L9/18

    CPC分类号: G06F21/755

    摘要: A method, information processing system, and computer readable medium are provided for preserving privacy of one-dimensional nonstationary data streams. The method includes receiving a one-dimensional nonstationary data stream. A set of first-moment statistical values are calculated, for a given instant of sub-space of time, for the data. The first moment statistical values include a principal component for the sub-space of time. The data is perturbed with noise along the principal component in proportion to the first-moment of statistical values so that at least part of a set of second-moment statistical values for the data is perturbed by the noise only within a predetermined variance.

    摘要翻译: 提供了一种方法,信息处理系统和计算机可读介质,用于保持一维非平稳数据流的隐私。 该方法包括接收一维非平稳数据流。 对于数据的子时间空间的给定时刻,计算一组一阶统计值。 第一时刻统计值包括时间子空间的主成分。 数据按照与主要分量成比例的噪声与第一时刻的统计值相互扰动,使得数据的至少一部分二维统计值仅在预定方差内被噪声扰动。

    Systems and methods for metadata embedding in streaming medical data
    10.
    发明授权
    Systems and methods for metadata embedding in streaming medical data 有权
    用于元数据嵌入流式医疗数据的系统和方法

    公开(公告)号:US08229191B2

    公开(公告)日:2012-07-24

    申请号:US12042961

    申请日:2008-03-05

    IPC分类号: G06K9/00 G06K9/36

    摘要: Systems and methods for embedding metadata such as personal patient information within actual medical data signals obtained from a patient are provided wherein two watermarks, a robust watermark and a fragile watermark are embedded in a given medical data signal. The robust watermark includes a binary coded representation of the metadata that is incorporated into the frequency domain of the medical data signal using discrete Fourier transformations and additive embedding. Error correcting code can also be added to the binary representation of the metadata using Hamming coding. A given robust watermark can be incorporated multiple times in the medical data signal. The fragile watermark is added on top of the modified medical signal containing the robust watermark in the spatial domain of the modified medical signal. The fragile watermark utilizes hash function to generate random sequences that are incorporated through the medical data signal.

    摘要翻译: 提供了用于将诸如个人患者信息之类的元数据嵌入到从患者获得的实际医疗数据信号中的系统和方法,其中在给定医疗数据信号中嵌入两个水印,鲁棒水印和脆弱水印。 鲁棒水印包括使用离散傅里叶变换和附加嵌入结合到医疗数据信号的频域中的元数据的二进制编码表示。 错误纠正码也可以使用汉明编码加到元数据的二进制表示中。 给定的鲁棒水印可以被并入多次在医疗数据信号中。 在修改后的医疗信号的空间域中包含鲁棒水印的经修改的医学信号之上添加脆弱水印。 脆弱水印利用散列函数产生通过医疗数据信号并入的随机序列。