Abstract:
A Reference Signal Received Power (RSRP) value is produced from a received Orthogonal Frequency Division Multiplexed (OFDM) signal that comprises a plurality of reference symbols located at known sub-carrier frequencies and times within the received OFDM signal. RSRP value production involves, for each hypothesized error state selected from a plurality of different hypothesized error states, ascertaining a corresponding hypothesized RSRP value, and then using the hypothesized RSRP values as a basis for determining a value for use as the produced RSRP value (e.g., by selecting a maximum one of the hypothesized RSRP values as the produced RSRP value). In this technology, each of the hypothesized error states is a hypothesized frequency error paired with a hypothesized timing error and the corresponding hypothesized RSRP value is produced by adjusting one or more measured channel estimates as a function of the hypothesized error state.
Abstract:
A Reference Signal Received Power (RSRP) value is produced from a received Orthogonal Frequency Division Multiplexed (OFDM) signal that comprises a plurality of reference symbols located at known sub-carrier frequencies and times within the received OFDM signal. RSRP value production involves, for each hypothesized error state selected from a plurality of different hypothesized error states, ascertaining a corresponding hypothesized RSRP value, and then using the hypothesized RSRP values as a basis for determining a value for use as the produced RSRP value (e.g., by selecting a maximum one of the hypothesized RSRP values as the produced RSRP value). In this technology, each of the hypothesized error states is a hypothesized frequency error paired with a hypothesized timing error and the corresponding hypothesized RSRP value is produced by adjusting one or more measured channel estimates as a function of the hypothesized error state.
Abstract:
The method disclosed herein is implemented in a radio receiver to detect an AWGN channel, where the radio receiver comprises a rake receiver. The radio receiver receives signals transmitted via a propagation channel from a transmitter, and determines that the propagation channel is an AWGN channel when a filtered version of a minimum value of a metric is lower than a threshold value. The metric relates to a difference between a normalized measured power profile of the propagation channel and a normalized power template, which normalized power template is dependent on predetermined sampling timing shifts and on rake finger positions within the rake receiver.
Abstract:
The method disclosed herein is implemented in a radio receiver to detect an AWGN channel, where the radio receiver comprises a rake receiver. The radio receiver receives signals transmitted via a propagation channel from a transmitter, and determines that the propagation channel is an AWGN channel when a filtered version of a minimum value of a metric is lower than a threshold value. The metric relates to a difference between a normalized measured power profile of the propagation channel and a normalized power template, which normalized power template is dependent on predetermined sampling timing shifts and on rake finger positions within the rake receiver.