Abstract:
The present invention relates to molecules which function as selective modulators (i.e., inhibitors and agonists, preferably inhibitors) of the Ras-homologous (Rho) family of small GTPases, in particular, Cdc42 GTPase and their use to treat diseases, for example cancers, including metastatic cancer, where Cdc42 GTPase is overexpressed or hyperactivated, genetic and acquired diseases where activation of Cdc42 GTPase plays a pivotal role (e.g., neurodegenerative diseases), rheumatoid arthritis, atherosclerosis, diabetes type I, autosomal polycystic kidney diease, cystic kidney disease, precystic kidney disease and microbial infections. Additionally, compounds according to the present invention may be used to inhibit rejection (graft host response) in transplant patients (pursuant to transplantation), to promote immunosuppression, anti-inflammatory response and to mobilize stem cell (migration) in patients in need, among others.
Abstract:
The present invention relates to molecules which function as selective modulators of the Ras-homologous (Rho) family of small GTPases, in particular, Cdc42 GTPase and their use to treat diseases, for example cancers, including metastatic cancer, genetic and acquired diseases where activation of Cdc42 GTPase plays a pivotal role, such as neurodegenerative diseases, rheumatoid arthritis, atherosclerosis, diabetes type I, autosomal polycystic kidney disease, cystic kidney disease, precystic kidney disease, microbial infections, including Chlamydia infections, E. coli infections, H. pylori infections and its secondary effects including gastric ulcers, Coxiella Brunetti (Q-fever) infections and Streptococcus pneumonia infections, fungal infections including Paracoccidiodes brasiliensis and Candida albicans and their secondary effects including lung edema. Additionally, compounds according to the present invention may be used to inhibit rejection in transplant patients (pursuant to transplantation), to promote immunosuppression, anti-inflammatory response and to mobilize stem cell (migration) in patients in need, among others.
Abstract:
In one embodiment, the invention provides a method of treating a subject who suffers from a cancer (particularly a chemotherapeutic or radiotherapeutic-resistant cancer) or from an inflammatory disorder, the method comprising co-administering to the subject a pharmaceutically-effective amount of: (a) one or more elements or compounds selected from the group consisting of arsenic, an arsenite and arsenic trioxide (ATO); and optionally (b) at least one anticancer agent (preferably a DNA damaging agent); and/or (c) at least one or more Poly(ADP-ribose) polymerase (PARP) inhibitors other than arsenic, an arsenite and arsenic trioxide (ATO). In preferred embodiments, the arsenic for the treatment of cancer, arsenite and ATO serve as radio sensitizers for concomitant radiotherapy as well as PARP inhibitors. Methods for treating inflammatory disease are also disclosed. Related pharmaceutical formulations are also provided.
Abstract:
The present invention relates to molecules which function as modulators (i.e., inhibitors and agonists) of the Ras-homologous (Rho) family of small GTPases (e.g. Rac, Cdc42 and Rho GTPases) and their use to treat diseases, including cancers (including solid tumors-medulloblastoma, ovarian, breast, head and neck, testicular, prostate among others and hematologic malignancies-B cell lymphoma, where these GTPases are overexpressed or hyperactivated), sporadic and genetic diseases where activation of Rho GTPases plays a pivotal role (Menkes disease, rheumatoid arthritis, atherosclerosis, diabetes (type I), Huntington's disease and Alzheimer's disease) which are mediated through these proteins. Compounds according to the present invention may also be used as a therapy for the treatment of Entamoeba spp. or Acanthamoeba spp. infections, especially including Entamoeba histolytica.
Abstract:
The present invention relates to molecules which function as modulators (i.e., inhibitors and agonists) of the Ras-homologous (Rho) family of small GTPases (e.g. Rac, Cdc42 and Rho GTPases) and their use to treat diseases, including cancers (including solid tumors-medulloblastoma, ovarian, breast, head and neck, testicular, prostate among others and hematologic malignancies-B cell lymphoma, where these GTPases are overexpressed or hyperactivated), sporadic and genetic diseases where activation of Rho GTPases plays a pivotal role (Menkes disease, rheumatoid arthritis, atherosclerosis, diabetes (type 1), Huntington's disease and Alzheimer's disease) which are mediated through these proteins. Compounds according to the present invention may also be used as a therapy for the treatment of Entamoeba spp. or Acanthamoeba spp. infections, especially including Entamoeba histolytica.