Abstract:
A capacitive sensing structure includes a first sensing electrode located in a first layer for sensing a first capacitance and producing a first sense signal indicative of the sensed first capacitance. A transmit electrode is located in the first layer and positioned surrounding 90%+ of a perimeter of the first sensing electrode. A second sensing electrode is located in the first layer and positioned surrounding 90%+ of a perimeter of the transmit electrode, the second sensing electrode to sense a second capacitance and produce a second sense signal indicative of the sensed second capacitance. Controller circuitry receives the first and second sense signals, compares a change in the sensed first capacitance to a change in the sensed second capacitance, and produces an output signal indicative of a user touch based upon the comparison between the change in the sensed first capacitance and the change in the sensed second capacitance.
Abstract:
An electronic device disclosed herein includes a touch screen controller to identify an island i.e., a matrix of acquired touch data values, the island including adjacent touch data values indicating a potential touch of a touch sensitive screen. A first sharpness of the island is calculated using a first normalization type and not a second normalization type. A second sharpness of the island is calculated using the first and second normalization types if the first sharpness is greater than the sharpness threshold. A dynamic variance threshold is determined as a function of the second sharpness. A dynamic strength threshold is determined as a function of the second sharpness if a variance of the island is greater than the dynamic variance threshold, and the island is determined to be a valid stylus island if the peak strength is greater than the dynamic strength threshold.
Abstract:
In one implementation, a capacitive sensing structure comprises rows of first sensors electrically coupled together and columns of second sensors electrically coupled together, wherein the first sensors include: a first arm extending in a first direction and having a first plurality of finger structures extending therefrom, a second arm extending in the first direction and having a second plurality of finger structures extending therefrom, and an end portion connecting the arms, wherein the first sensors define open regions that are occupied by the second sensors. In a second implementation, a capacitive sensing structure comprises rows of first sensors and columns of second sensors, wherein each of the first sensors includes an elongated portion having finger structures extending therefrom, and wherein each of the second sensors includes a primary portion connected to secondary portions via arms, wherein the secondary portions occupy gaps defined by the finger structures of the first sensors.
Abstract:
A method comprises during a frame period finding a first EFT noise influenced sensor of a touch screen panel, determining whether the first EFT noise influenced sensor is located at a last transmitting/driving line of the touch screen panel, designating the frame period as a noise influenced frame period using an absolute value threshold if the first EFT noise influenced sensor is not located at the last transmitting/driving line and designating the frame period as the noise influenced frame period using a percentage threshold if the first EFT noise influenced sensor is located at the last transmitting/driving line.
Abstract:
An active stylus is capacitively coupled to a capacitive touch panel for communication. The active stylus operates in a wait mode to receive initial communications from the panel. In response to such receipt, the active stylus synchronizes to a repeating communications frame implementing time division multiplexing. Communications from the active stylus to the panel include: information communications; synchronization communications and communications specific for columns and/or rows of the panel. Communications from the panel to the active stylus may be addressed uniquely to the stylus or commonly to a group of styluses.
Abstract:
A method of pairing an intelligent input device with an electronic device includes transmitting a start pairing identifier and receiving a unique identifier that identifies the intelligent input device. The method further includes authenticating the unique identifier using authentication information stored in the electronic device and transmitting a pairing successful identifier responsive to the unique identifier being authenticated to thereby pair the intelligent input device and the electronic device.
Abstract:
Disclosed is a touch sensor and method for detecting a touch in a capacitive touchscreen application, wherein the touch sensor is capable of distinguishing between a finger hovering above the touch sensor and a touch from a stylus having a small contact surface area without having to adjust the sensitivity of the touch sensor. The touch sensor includes a first sensing electrode, a transmit electrode, and a second sensing electrode, wherein the second sensing electrode is positioned substantially around the perimeter of the inner circuitry (i.e., transmit electrode and first sensing electrode). A touch is detected by sensing changes in a first capacitance between the transmit electrode and first sensing electrode and a second capacitance between the transmit electrode and second sensing electrode. The changes in the first and second capacitances are compared to determine whether the changes in the capacitances are due to a finger hover or a touch.
Abstract:
An active stylus is capacitively coupled to a capacitive touch panel for communication. The active stylus operates in a wait mode to receive initial communications from the panel. In response to such receipt, the active stylus synchronizes to a repeating communications frame implementing time division multiplexing. Communications from the active stylus to the panel include: information communications; synchronization communications and communications specific for columns and/or rows of the panel. Communications from the panel to the active stylus may be addressed uniquely to the stylus or commonly to a group of styluses.
Abstract:
In one implementation, a capacitive sensing structure comprises rows of first sensors electrically coupled together and columns of second sensors electrically coupled together, wherein the first sensors include: a first arm extending in a first direction and having a first plurality of finger structures extending therefrom, a second arm extending in the first direction and having a second plurality of finger structures extending therefrom, and an end portion connecting the arms, wherein the first sensors define open regions that are occupied by the second sensors. In a second implementation, a capacitive sensing structure comprises rows of first sensors and columns of second sensors, wherein each of the first sensors includes an elongated portion having finger structures extending therefrom, and wherein each of the second sensors includes a primary portion connected to secondary portions via arms, wherein the secondary portions occupy gaps defined by the finger structures of the first sensors.
Abstract:
An active stylus is capacitively coupled to a capacitive touch panel for communication. The active stylus operates in a wait mode to receive initial communications from the panel. In response to such receipt, the active stylus synchronizes to a repeating communications frame implementing time division multiplexing. Communications from the active stylus to the panel include: information communications; synchronization communications and communications specific for columns and/or rows of the panel. Communications from the panel to the active stylus may be addressed uniquely to the stylus or commonly to a group of styluses.