Abstract:
A semiconductor package includes an RFID chip positioned between a first die and a second die attached to a support substrate. The RFID chip is free of electrical connections to the dice and the support substrate. The RFID chip is sized to correspond to an interposer board. Data pertaining to operating characteristics of the dice are stored to and read from the RFID chip during back-end processing to determine abnormalities and improve yield. Said data may be stored to a database corresponding to the RFID chip in the package. A method of making a semiconductor package having an RFID chip positioned between dice is provided. The package is traceable by customers via the data stored to the RFID chip and the database.
Abstract:
A semiconductor package includes an RFID chip positioned between a first die and a second die attached to a support substrate. The RFID chip is free of electrical connections to the dice and the support substrate. The RFID chip is sized to correspond to an interposer board. Data pertaining to operating characteristics of the dice are stored to and read from the RFID chip during back-end processing to determine abnormalities and improve yield. Said data may be stored to a database corresponding to the RFID chip in the package. A method of making a semiconductor package having an RFID chip positioned between dice is provided. The package is traceable by customers via the data stored to the RFID chip and the database.