Abstract:
A biasing and driving circuit for an electric load, having an input adapted to receive an a.c. input voltage and an output adapted to supply a d.c. output voltage, comprising: a voltage-regulator device, having a feedback input terminal configured to receive a sensing voltage that is a function of a supply current that flows through the electric load and regulating, on the basis of the sensing voltage received, the supply current; a resistive sensing element, operatively coupled to the feedback input, configured to receive the supply current and generate the sensing voltage as a function of the supply current; a resistor coupled to the feedback input; and an auxiliary biasing circuit adapted to receive the a.c. input voltage and inject through the resistor an a.c. auxiliary biasing current that varies in a way inversely proportional to the input voltage.
Abstract:
An electronic system includes a feedback voltage regulator circuit including input terminals receiving a rectified alternating input voltage signal and a feedback input terminal receiving a feedback voltage that is generated based on a load current through an electric load. A sensing element senses the load current through the electric load and generates sensed voltage based upon the sensed load current. A current transducer receives the sensed voltage and provides the feedback voltage based upon the sensed voltage. A current generator receives the alternating input voltage signal and provides a biasing current signal that is a function of the alternating input voltage signal to modulate the feedback voltage on the feedback input terminal based upon the alternating input voltage signal.
Abstract:
A biasing and driving circuit for an electric load, having an input adapted to receive an a.c. input voltage and an output adapted to supply a d.c. output voltage, comprising: a voltage-regulator device, having a feedback input terminal configured to receive a sensing voltage that is a function of a supply current that flows through the electric load and regulating, on the basis of the sensing voltage received, the supply current; a resistive sensing element, operatively coupled to the feedback input, configured to receive the supply current and generate the sensing voltage as a function of the supply current; a resistor coupled to the feedback input; and an auxiliary biasing circuit adapted to receive the a.c. input voltage and inject through the resistor an a.c. auxiliary biasing current that varies in a way inversely proportional to the input voltage.
Abstract:
An electronic system includes a feedback voltage regulator circuit including input terminals receiving an alternating input voltage signal and a feedback input terminal receiving a feedback voltage that is generated based on a load current through an electric load. A sensing element senses the load current through the electric load and generates and sensed voltage based upon the sensed load current. A current transducer receives the sensed voltage provides the feedback voltage based upon the sensed voltage. A current generator receives the alternating input voltage signal and provides a biasing current signal that is a function of the alternating input voltage signal to modulate the feedback voltage on the feedback input terminal based upon the alternating input voltage signal.
Abstract:
A biasing and driving circuit for an electric load, having an input adapted to receive an a.c. input voltage and an output adapted to supply a d.c. output voltage, comprising: a voltage-regulator device, having a feedback input terminal configured to receive a sensing voltage that is a function of a supply current that flows through the electric load and regulating, on the basis of the sensing voltage received, the supply current; a resistive sensing element, operatively coupled to the feedback input, configured to receive the supply current and generate the sensing voltage as a function of the supply current; a resistor coupled to the feedback input; and an auxiliary biasing circuit adapted to receive the a.c. input voltage and inject through the resistor an a.c. auxiliary biasing current that varies in a way inversely proportional to the input voltage.
Abstract:
A biasing and driving circuit for an electric load, having an input adapted to receive an a.c. input voltage and an output adapted to supply a d.c. output voltage, comprising: a voltage-regulator device, having a feedback input terminal configured to receive a sensing voltage that is a function of a supply current that flows through the electric load and regulating, on the basis of the sensing voltage received, the supply current; a resistive sensing element, operatively coupled to the feedback input, configured to receive the supply current and generate the sensing voltage as a function of the supply current; a resistor coupled to the feedback input; and an auxiliary biasing circuit adapted to receive the a.c. input voltage and inject through the resistor an a.c. auxiliary biasing current that varies in a way inversely proportional to the input voltage.