Abstract:
A touch controller is coupled to a touch screen and detects a first gesture at a first point on the touch screen. The first gesture includes physical contact of the touch screen by a user device at the first point. The touch controller detects a second gesture that is associated with movement of the user device from the first point to a second point on the touch screen. The second gesture includes detecting movement of the user device within a sensing range from the first point to the second point. The sensing range corresponds to an orthogonal distance from a surface of the touch screen. The touch controller detects a third gesture at the second touch point. The third gesture includes physical contact of the touch screen at the second touch point. Upon detecting the first, second and third gestures the touch controller performs a corresponding action.
Abstract:
Disclosed is a touch sensor and method for detecting a touch in a capacitive touchscreen application, wherein the touch sensor is capable of distinguishing between a finger hovering above the touch sensor and a touch from a stylus having a small contact surface area without having to adjust the sensitivity of the touch sensor. The touch sensor includes a first sensing electrode, a transmit electrode, and a second sensing electrode, wherein the second sensing electrode is positioned substantially around the perimeter of the inner circuitry (i.e., transmit electrode and first sensing electrode). A touch is detected by sensing changes in a first capacitance between the transmit electrode and first sensing electrode and a second capacitance between the transmit electrode and second sensing electrode. The changes in the first and second capacitances are compared to determine whether the changes in the capacitances are due to a finger hover or a touch.
Abstract:
A method of pairing an intelligent input device with an electronic device includes transmitting a start pairing identifier and receiving a unique identifier that identifies the intelligent input device. The method further includes authenticating the unique identifier using authentication information stored in the electronic device and transmitting a pairing successful identifier responsive to the unique identifier being authenticated to thereby pair the intelligent input device and the electronic device.
Abstract:
Disclosed is a touch sensor and method for detecting a touch in a capacitive touchscreen application, wherein the touch sensor is capable of distinguishing between a finger hovering above the touch sensor and a touch from a stylus having a small contact surface area without having to adjust the sensitivity of the touch sensor. The touch sensor includes a first sensing electrode, a transmit electrode, and a second sensing electrode, wherein the second sensing electrode is positioned substantially around the perimeter of the inner circuitry (i.e., transmit electrode and first sensing electrode). A touch is detected by sensing changes in a first capacitance between the transmit electrode and first sensing electrode and a second capacitance between the transmit electrode and second sensing electrode. The changes in the first and second capacitances are compared to determine whether the changes in the capacitances are due to a finger hover or a touch.
Abstract:
A touch controller is coupled to a touch screen and detects a first gesture at a first point on the touch screen. The first gesture includes physical contact of the touch screen by a user device at the first point. The touch controller detects a second gesture that is associated with movement of the user device from the first point to a second point on the touch screen. The second gesture includes detecting movement of the user device within a sensing range from the first point to the second point. The sensing range corresponds to an orthogonal distance from a surface of the touch screen. The touch controller detects a third gesture at the second touch point. The third gesture includes physical contact of the touch screen at the second touch point. Upon detecting the first, second and third gestures the touch controller performs a corresponding action.
Abstract:
A capacitive sensing structure includes a first sensing electrode located in a first layer for sensing a first capacitance and producing a first sense signal indicative of the sensed first capacitance. A transmit electrode is located in the first layer and positioned surrounding 90%+ of a perimeter of the first sensing electrode. A second sensing electrode is located in the first layer and positioned surrounding 90%+ of a perimeter of the transmit electrode, the second sensing electrode to sense a second capacitance and produce a second sense signal indicative of the sensed second capacitance. Controller circuitry receives the first and second sense signals, compares a change in the sensed first capacitance to a change in the sensed second capacitance, and produces an output signal indicative of a user touch based upon the comparison between the change in the sensed first capacitance and the change in the sensed second capacitance.
Abstract:
In one implementation, a capacitive sensing structure comprises rows of first sensors electrically coupled together and columns of second sensors electrically coupled together, wherein the first sensors include: a first arm extending in a first direction and having a first plurality of finger structures extending therefrom, a second arm extending in the first direction and having a second plurality of finger structures extending therefrom, and an end portion connecting the arms, wherein the first sensors define open regions that are occupied by the second sensors. In a second implementation, a capacitive sensing structure comprises rows of first sensors and columns of second sensors, wherein each of the first sensors includes an elongated portion having finger structures extending therefrom, and wherein each of the second sensors includes a primary portion connected to secondary portions via arms, wherein the secondary portions occupy gaps defined by the finger structures of the first sensors.
Abstract:
A method comprises during a frame period finding a first EFT noise influenced sensor of a touch screen panel, determining whether the first EFT noise influenced sensor is located at a last transmitting/driving line of the touch screen panel, designating the frame period as a noise influenced frame period using an absolute value threshold if the first EFT noise influenced sensor is not located at the last transmitting/driving line and designating the frame period as the noise influenced frame period using a percentage threshold if the first EFT noise influenced sensor is located at the last transmitting/driving line.
Abstract:
In one implementation, a capacitive sensing structure comprises rows of first sensors electrically coupled together and columns of second sensors electrically coupled together, wherein the first sensors include: a first arm extending in a first direction and having a first plurality of finger structures extending therefrom, a second arm extending in the first direction and having a second plurality of finger structures extending therefrom, and an end portion connecting the arms, wherein the first sensors define open regions that are occupied by the second sensors. In a second implementation, a capacitive sensing structure comprises rows of first sensors and columns of second sensors, wherein each of the first sensors includes an elongated portion having finger structures extending therefrom, and wherein each of the second sensors includes a primary portion connected to secondary portions via arms, wherein the secondary portions occupy gaps defined by the finger structures of the first sensors.
Abstract:
A display screen is configured to display information with a selectable one of many information display orientations. A touch screen panel of a touch screen system is positioned to overlie the display screen. The touch screen system operates to make a proximate touch detection, for example by a body part or stylus. A controller receives the proximate touch information from the capacitive touch screen system and interprets the proximate touch information to determine an indication from a user of a selection of an information display orientation for the display screen. The controller then controls the display screen to present information in accordance with the user selected information display orientation. The user selected information display orientation via the proximate touch detection will over-ride any other selected information display orientation such as a selection made in response to an orientation identified by an accelerometer or other gravity influenced sensor.