Abstract:
A three-phase load is powered by a PWM (e.g., SVPWM) driven DC-AC inverter having a single shunt-topology. A shunt voltage and a branch voltage of the inverter (across a transistor to be calibrated) are measured during a second period of each SVPWM sector, and the drain-to-source resistance of the calibrated transistor is calculated. During the fourth period of each SVPWM sector, the branch voltage is measured again, and another branch voltage across another transistor is measured. Using the drain-to-source resistance of the calibrated transistor and the voltage across the calibrated transistor measured during the fourth period, the phase current through the calibrated transistor is calculated. Using the other branch voltage measured during the fourth period and the drain-to-source resistance of its corresponding transistor (known from a prior SVPWM sector), the phase current through that transistor is calculated. From the two calculated phase currents, the other phase current can be calculated.
Abstract:
An estimate of the initial position of a rotor is made by monitoring sensed motor current signals which are amplitude and phase modulated with the rotor flux position in response to a high frequency voltage signal injection. The motor current signals are envelope detected to determine zero crossing points. Samples are taken of the motor current signals at positive and negative offsets from the zero crossing point, with the samples processed to identify a direction of the rotor flux axis. Further samples of at least one motor current signal are taken with respect to a certain phase reference, and the samples compared to resolve a polarity of the rotor flux axis which is indicative of the angular position of the rotor.
Abstract:
An estimate of the initial position of a rotor is made by monitoring sensed motor current signals which are amplitude and phase modulated with the rotor flux position in response to a high frequency voltage signal injection. The motor current signals are envelope detected to determine zero crossing points. Samples are taken of the motor current signals at positive and negative offsets from the zero crossing point, with the samples processed to identify a direction of the rotor flux axis. Further samples of at least one motor current signal are taken with respect to a certain phase reference, and the samples compared to resolve a polarity of the rotor flux axis which is indicative of the angular position of the rotor.
Abstract:
A three-phase load is powered by a PWM (e.g., SVPWM) driven DC-AC inverter having a single shunt-topology. A shunt voltage and a branch voltage of the inverter (across a transistor to be calibrated) are measured during a second period of each SVPWM sector, and the drain-to-source resistance of the calibrated transistor is calculated. During the fourth period of each SVPWM sector, the branch voltage is measured again, and another branch voltage across another transistor is measured. Using the drain-to-source resistance of the calibrated transistor and the voltage across the calibrated transistor measured during the fourth period, the phase current through the calibrated transistor is calculated. Using the other branch voltage measured during the fourth period and the drain-to-source resistance of its corresponding transistor (known from a prior SVPWM sector), the phase current through that transistor is calculated. From the two calculated phase currents, the other phase current can be calculated.
Abstract:
An estimate of the initial position of a rotor is made by monitoring sensed motor current signals which are amplitude and phase modulated with the rotor flux position in response to a high frequency voltage signal injection. The motor current signals are envelope detected to determine zero crossing points. Samples are taken of the motor current signals at positive and negative offsets from the zero crossing point, with the samples processed to identify a direction of the rotor flux axis. Further samples of at least one motor current signal are taken with respect to a certain phase reference, and the samples compared to resolve a polarity of the rotor flux axis which is indicative of the angular position of the rotor.
Abstract:
An estimate of the initial position of a rotor is made by monitoring sensed motor current signals which are amplitude and phase modulated with the rotor flux position in response to a high frequency voltage signal injection. The motor current signals are envelope detected to determine zero crossing points. Samples are taken of the motor current signals at positive and negative offsets from the zero crossing point, with the samples processed to identify a direction of the rotor flux axis. Further samples of at least one motor current signal are taken with respect to a certain phase reference, and the samples compared to resolve a polarity of the rotor flux axis which is indicative of the angular position of the rotor.