Abstract:
A reading circuit for a magnetic-field sensor, generating an electrical detection quantity as a function of a detected magnetic field and of a detection sensitivity, is provided with an amplification stage, which is coupled to the magnetic-field sensor and generates an output signal as a function of the electrical detection quantity. In particular, the reading circuit is provided with a calibration stage, integrated with the amplification stage and configured so as to control a feedback loop in such a way as to compensate a variation of the detection sensitivity with respect to a nominal sensitivity value.
Abstract:
A reading circuit for a magnetic-field sensor, generating an electrical detection quantity as a function of a detected magnetic field and of a detection sensitivity, is provided with an amplification stage, which is coupled to the magnetic-field sensor and generates an output signal as a function of the electrical detection quantity and of an amplification gain. In particular, the amplification gain is electronically selectable, and the reading circuit is moreover provided with a calibration stage, integrated with the amplification stage and configured so as to vary a value of the amplification gain in such a way as to compensate a variation of the detection sensitivity with respect to a nominal sensitivity value.
Abstract:
Described herein is a biasing circuit for a magnetic-field sensor; the magnetic-field sensor is provided with a first detection structure, which generates a first electrical detection quantity as a function of a first component of an external magnetic field, and a second detection structure, which generates a second electrical detection quantity as a function of a second component of an external magnetic field. The biasing circuit electrically supplies the first detection structure and the second detection structure in respective biasing time intervals, at least partially distinct from one another, which preferably do not temporally overlap one other.
Abstract:
Described herein is a biasing circuit for a magnetic-field sensor; the magnetic-field sensor is provided with a first detection structure, which generates a first electrical detection quantity as a function of a first component of an external magnetic field, and a second detection structure, which generates a second electrical detection quantity as a function of a second component of an external magnetic field. The biasing circuit electrically supplies the first detection structure and the second detection structure in respective biasing time intervals, at least partially distinct from one another, which preferably do not temporally overlap one other.
Abstract:
A method of manufacturing an electronic module includes providing a base substrate having a first surface, providing a first supporting element having a first portion with an inclined top surface, and affixing the first supporting element to the first surface such that the inclined top surface is inclined with respect to the base substrate. A first reflector is coupled to the inclined top surface such that a rear surface of the first reflector is in physical contact with the inclined top surface of the first portion of the first supporting element, and a spacer structure is configured to form an interface for mounting lateral walls to the base substrate. A cap is positioned over and supported by the lateral walls to thereby define a chamber. The emitter, as well as a detector, are coupled to the first surface of the base substrate.
Abstract:
A reading circuit for a magnetic-field sensor, generating an electrical detection quantity as a function of a detected magnetic field and of a detection sensitivity, is provided with an amplification stage, which is coupled to the magnetic-field sensor and generates an output signal as a function of the electrical detection quantity. In particular, the reading circuit is provided with a calibration stage, integrated with the amplification stage and configured so as to control a feedback loop in such a way as to compensate a variation of the detection sensitivity with respect to a nominal sensitivity value.
Abstract:
A reading circuit for a magnetic-field sensor, generating an electrical detection quantity as a function of a detected magnetic field and of a detection sensitivity, is provided with an amplification stage, which is coupled to the magnetic-field sensor and generates an output signal as a function of the electrical detection quantity and of an amplification gain. In particular, the amplification gain is electronically selectable, and the reading circuit is moreover provided with a calibration stage, integrated with the amplification stage and configured so as to vary a value of the amplification gain in such a way as to compensate a variation of the detection sensitivity with respect to a nominal sensitivity value.