Abstract:
A method of manufacturing the positive electrode material for a lithium ion secondary battery includes a first step of mixing Li3PO4, LiOH, H3PO4, an Fe source, a Mn source, and an M source to prepare raw material slurry, and a second step of subjecting the raw material slurry to a reaction under a high temperature and a high pressure. In the first step, mixing amounts of Li and P are set to 3.00≦Li/(Fe+Mn+M)≦3.10 and 1.00≦P/(Fe+Mn+M)≦1.10, mixing amounts of LiOH and H3PO4 are set to 0
Abstract translation:制造锂离子二次电池用正极材料的方法包括:将Li 3 PO 4,LiOH,H 3 PO 4,Fe源,Mn源和M源混合以制备原料浆料的第一步骤, 原料浆料在高温高压下进行反应。 在第一步骤中,将Li和P的混合量设定为3.00≤Li(Fe + Mn + M)≤3.10,1.00≤P/(Fe + Mn + M)≤1.10,设定LiOH和H 3 PO 4的混合量 至0
Abstract:
An electrode material which can improve the mobility of electrons and the mobility of ions at the same time, and, furthermore, does not have a problem of the impairment of the diffusion of lithium ions in a thin layer containing a carbonaceous electron-conductive substance so as to be excellent in terms of load characteristics and energy density, and an electrode and a lithium ion battery are provided.The electrode material of the invention is produced by forming a thin layer made of a carbonaceous electron-conductive substance on surfaces of primary particles made of an electrode active material, in which the carbonaceous electron-conductive substance contains nitrogen atoms.
Abstract:
To provide a positive electrode material for lithium ion secondary batteries capable of reducing waste loss, a method of producing the same, a positive electrode for lithium ion secondary batteries and a lithium ion secondary battery which contain the above-described positive electrode material for lithium ion secondary batteries. A positive electrode material for lithium ion secondary batteries, wherein the positive electrode material includes inorganic particles whose surfaces are coated with a carbonaceous film, the inorganic particles being represented by a formula LiFexMn1-x-yMyPO4 (0.05≦x≦1.0, 0≦y≦0.14, where M represents at least one selected from the group consisting of Mg, Ca, Co, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, and rare earth elements), a specific surface area is 6 m2/g to 20 m2/g, a lightness L* is 0 to 40, and a chroma C* is 0 to 3.5.